a*b%p a^b%p(快速幂)

版权声明: https://blog.csdn.net/qq_40624026/article/details/89045304

a^b%p和 a*b%p问题(快速幂运算)

a^b%p问题

求 a 的 b 次方对 p 取模的值。

输入格式
三个整数 a,b,p ,在同一行用空格隔开。

输出格式
输出一个整数,表示a^b mod p的值。

数据范围
1≤a,b,p≤10^9
输入样例:
3 2 7
输出样例:
2

首先,我们最直接的想法是直接用循环求出a的b次幂,之后对p取模,但是我们认真思考一下会发现,这种算法一是复杂度较高,二是会导致数据溢出,所以这种方法不可取,我们会想到位运算
210=2228=2212232^{10} = 2^{2}*2^{8} = 2^{2^1}*2^{2^3}

10的二进制数可以表示为1010,我们可以初始ans =1%p,然后对b的二进制表示下的每一位进行判断,如果是1,就将现在这个状态下的b积到ans上

#include <iostream>
#include <cstdio>
using namespace std;

/*
int power(int a,int b,int p)
{
    int ans = 1 % p;
    for(; b; b>>=1)
    {
        if(b&1) ans = (long long)ans * a % p;//3^10 = 3^2 * 3^8   10 = 1010 倒数第二位和第四位不为0
        a = (long long) a * a % p; 
        cout<<a<<" "<<b<< endl;
    }
    return ans;
}
*/

int pow(int a,int b,int p)
{
    int ans =  1 % p;
    for(b; b; b>>=1)
    {
        if(b&1) ans = (long long )ans * a % p;
        a = (long long) a * a % p;
    }
    return ans;
}


int main()
{
    long long a,b,p;
    scanf("%lld %lld %lld",&a,&b,&p);
    printf("%lld\n",pow(a,b,p));
    return 0;
}

a*b%p问题与之类似,不同之处在于,ans初始为0;判断b的二进制最后一位为1的话,ans = (ans+a)%p;a = a * 2 % p

求 a 乘 b 对 p 取模的值。

输入格式
第一行输入整数a,第二行输入整数b,第三行输入整数p。

输出格式
输出一个整数,表示a*b mod p的值。

数据范围
1≤a,b,p≤1018
输入样例:
3
4
5
输出样例:
2

#include <iostream>

typedef long long LL;

using namespace std;

LL mod(LL a,LL b,LL p)
{
    LL ans = 0;
    for(;b;b>>=1)
    {
        if(b&1) ans = (ans + a) % p;
        a = a * 2 % p;
    }
    return ans;
}
int main()
{
    LL a,b,p;
    cin>>a>>b>>p;
    cout<<mod(a,b,p)<<endl;
    return 0;
}

由于初学算法,欢迎大佬评论指正,谢谢

展开阅读全文

没有更多推荐了,返回首页