在pytorch深度学习模型中加入自己的想法时遇到的错误。报错显示是网络的反向传播出了问题,一个需要计算梯度的变量被inplace操作(如a+=b)修改。
首先参考的是【PyTorch】RuntimeError: one of the variables needed for gradient computation has been modified by an_ncc1995的博客-CSDN博客 但上述所描述的和我遇到的情况不同。经过代码检查,发现其中有一步是,把每个batch内提取出的图像特征image_features的和存为sum,在下一个batch中,在sum的基础上再加上该batch提取出的图像特征的和。这步就出现了问题。原本思路是跨batch求和,这样特征偏移的更少。但由于sum会保留来自上一个batch的梯度,因此这样会导致上一个batch的梯度干扰了本batch内的梯度。因此修改代码改为只在每个batch内求图像特征的和或均值即可。
出现该错误还是在于网络结构和计算出现问题。