河北高校邀请赛——二手车交易价格预测学习笔记(3)

Task 03 特征工程

特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,包括特征筛选,提取特征和特征创造等手段。

  • 可能面对的问题:特征之间有相关性,特征和标签无关,特征太多或太小,或者干脆就无法表现出应有的数据现象或无法展示数据的真实面貌
  • 特征工程的目的:1) 降低计算成本,2) 提升模型上限

在知名数据竞赛网站Kaggle上有一句非常经典的话,数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。因此,特征工程是对最终结果影响最大的一步,值得我们好好设计。在实际比赛中,模型都是调包调参,有比较固定的套路,能体现大家创造性的地方主要就在于特征工程了。当然这不是说模型就不重要,设计好的特征工程是需要建立在熟悉模型原理和代码实现的基础上的。不论是学习特征工程设计还是选择合适的模型,都非一朝一夕之功,锲而不舍才可为之。

常见的特征工程:

  1. 异常处理:
  • 通过箱线图(或 3-Sigma)分析删除异常值;
  • BOX-COX 转换(处理有偏分布);
  • 长尾截断;
  1. 特征归一化/标准化:
  • 标准化(转换为标准正态分布);
  • 归一化(抓换到 [0,1] 区间);
  • 针对幂律分布,可以采用公式: l o g ( 1 + x 1 + m e d i a n ) log(\frac{1+x}{1+median}) log(1+median1+x)
  • 数据分桶:
  • 等频分桶;
  • 等距分桶;
  • Best-KS 分桶(类似利用基尼指数进行二分类);
  • 卡方分桶;
  1. 缺失值处理:
  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值单独一个箱;
  1. 特征构造:
  • 构造统计量特征,报告计数、求和、比例、标准差等;
  • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • 地理信息,包括分箱,分布编码等方法;
  • 非线性变换,包括 log/ 平方/ 根号等;
  • 特征组合,特征交叉;
  • 仁者见仁,智者见智。
  1. 特征筛选
  • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差过滤法/相关系数法/卡方检验法/互信息法;
  • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
  • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
  1. 降维
  • PCA/ LDA/ ICA;
  • 特征选择也是一种降维。

由于最近比较忙,几乎没时间做这个task03,今晚稍微看了下baseline,有了一定的理解,但尚未达到能输出一些内容的地步,因此为了打卡先挖个坑,日后再填。

代码示例

首先导入相关的库和读入数据集
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%matplotlib inline

train = pd.read_csv('car_train_0110.csv', sep=' ')
test = pd.read_csv('car_testA_0110.csv', sep=' ')
查看数据

![(https://img-blog.csdnimg.cn/20210420105345471.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQwNjMxNTY4,size_16,color_FFFFFF,t_70)

去除异常值

这里借助箱线图来帮我们处理异常值,关于箱线图相关的的一些背景知识可以见这篇博客https://blog.csdn.net/yeziand01/article/details/85168723。

# 这里我包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度,一般设置成1.5会比较好,因为上限=Q3+1.5IQR
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))   #四分位距
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)  #rule是被筛出去丢弃的数据

    data_n = data.copy()
    data_series = data_n[col_name]  #得到该列数据Series
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)   #删除异常数据
    data_n.reset_index(drop=True, inplace=True)    
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])  #删除异常值后的数据
    return data_n
# 我们可以删掉一些异常数据,以 power 为例。  
#power是汽车的发动机功率,正常值应该在[0,600]
#但是在这里我们看到还是功率271以上的数据都被删了,那说明其实power这列特征不适宜用箱线图剔除异常值
train = outliers_proc(train, 'power', scale=1.5)

在这里插入图片描述
当然,我们也可以用3-sigma法则处理异常值,其结果和上面用箱线图的结果差不多。但注意,使用3-sigma法则的前提是数据是正态分布的。值得一提的是,以概率分布为核心的研究大都聚焦于正态分布的数据,正态分布只依赖于数据集的两个特征:样本的均值和方差。使用正态分布,预测变量并在一定范围内找到它的概率会变得非常简单。

在这里插入图片描述

特征构造
# 训练集和测试集放在一起,方便构造特征
train['train']=1
test['train']=0
data = pd.concat([train, test], ignore_index=True, sort=False)
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce',将无效解析设置为NaT
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days

# 看一下空数据,有 30k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,12%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()
# 从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
# 数据分桶 以 power 为例
# 这时候我们的缺失值也进桶了,
# 为什么要做数据分桶呢,原因有很多,= =
# 1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
# 2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性

bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)  #懂了,给出指定区间进行分箱,并返回x中的数据在哪个bin
data[['power_bin', 'power']].head()
# 利用好了,就可以删掉原始数据了
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)

# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv', index=0)

下面我们再构造一份特征给 LR NN 之类的模型用,注意针对不同的模型,所需的特征工程也有所不同。


train['power'].plot.hist()

在这里插入图片描述
我们刚刚已经对 train[‘power’] 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替。
但在这里我们对其采用先取 log,再做归一化的做法。为什么呢?
首先,我们从之前train[‘power’]的分布可以看出这是一个长尾分布,如果直接做归一化,那么有较多有效数据分布的正常区间就会被映射到一个很小的区间上,造成了精度损失,不利于模型的学习。所以要先通过log变换,将处于较低范围的有效的数据分布区间拉伸,将“long tail”部分压缩。然后再做归一化。

# 我们对其取 log,再做归一化 但为什么要先取log再做归一化呢?
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1)
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()
# kilometer部分的特征分布比较均匀,所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()

要注意区分这个分布与长尾分布

# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

# 对标签类特征做one-hot编码
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])
print(data.shape)
data.columns  
data.to_csv('data_for_lr.csv', index=0)   # 这份数据可以给 LR 用

在这里插入图片描述
这份数据的维度相当高,给LR之类的模型用效果有待观察。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值