PAT甲级1010

1010 Radix (25point(s))

Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is yes, if 6 is a decimal number and 110 is a binary number.

Now for any pair of positive integers N​1​​ and N​2​​, your task is to find the radix of one number while that of the other is given.

Input Specification:

Each input file contains one test case. Each case occupies a line which contains 4 positive integers:


N1 N2 tag radix

Here N1 and N2 each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a-z } where 0-9 represent the decimal numbers 0-9, and a-z represent the decimal numbers 10-35. The last number radix is the radix of N1 if tag is 1, or of N2 if tag is 2.

Output Specification:

For each test case, print in one line the radix of the other number so that the equation N1 = N2 is true. If the equation is impossible, print Impossible. If the solution is not unique, output the smallest possible radix.

Sample Input 1:

6 110 1 10

Sample Output 1:

2

Sample Input 2:

1 ab 1 2

Sample Output 2:

Impossible

题目大意:给两个数n1,n2,第三个数用i表示,第四个数用radix表示,代表ni的进制数。求另一个数的进制数是多少时可以让两个数相等,如果不可能输出Impossible。
解题思路:首先将给出进制的那个数求出来对应的十进制数,记作num,这里统一用long long类型;然后再使用二分法从[low, high]中寻找能使两个数相等的进制数,low代表最低进制,high直接取num。这道题关键是要用二分法查找,因为low和high距离可能过大,比如输入123456789 1 1 10时,low为2,high为123456789,相差过大,如果按顺序循环可能会超时...
Java代码:

import java.util.Scanner;

public class Main{
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		String n1 = sc.next();
		String n2 = sc.next();
		int tag = sc.nextInt();
		long radix = sc.nextLong();
		long result_radix = tag == 1 ? find_radix(n2, convert(n1, radix)) : find_radix(n1, convert(n2, radix));
		if (result_radix != -1) {
			System.out.println(result_radix);
		} else {
			System.out.println("Impossible");
		}
	}

	static long find_radix(String n, long num) {
		long low = '0';
		for (int i = 0; i < n.length(); i++) {
			if (low < n.charAt(i)) {
				low = n.charAt(i);
			}
		}
		low = (low >= 97 ? low - 'a' + 10 : low - '0') + 1;
		long high = Math.max(low, num);
		while (low <= high) {
			long mid = (low + high) / 2;
			long t = convert(n, mid);
			if (t < 0 || t > num)
				high = mid - 1;
			else if (t == num)
				return mid;
			else
				low = mid + 1;
		}
		return -1;
	}

	static long convert(String n, long radix) {
		long sum = 0;
		int temp = 0, index = 0;
		for (int i = n.length() - 1; i >= 0; i--) {
			temp = n.charAt(i) >= 'a' ? n.charAt(i) - 'a' + 10 : n.charAt(i) - '0';
			sum += temp * Math.pow(radix, index++);
		}
		return sum;
	}
}

C++代码:

#include <bits/stdc++.h>
using namespace std;
long long convert(string n, long long radix)
{
    long long sum = 0;
    int temp = 0, index = 0;
    for(auto it = n.rbegin(); it != n.rend(); it++)
    {
        temp = isdigit(*it) ? *it - '0' : *it - 'a' + 10;
        sum += temp * pow(radix, index++);
    }
    return sum;
}
long long find_radix(string n, long long num)
{
    char it = *max_element(n.begin(), n.end());
    long long low = (isdigit(it) ? it - '0' : it - 'a' + 10) + 1;
    long long high = max(num, low);
    while(low <= high){
        long long mid = (low+high)/2;
        long long t = convert(n, mid);
        if(t<0||t>num) high = mid - 1;
        else if(t==num) return mid;
        else low = mid + 1;
    }
    return -1;
}
int main()
{
    string n1, n2;
    long long tag = 0, radix = 0, result_radix;
    cin >> n1 >> n2 >> tag >> radix;
    result_radix = tag == 1 ? find_radix(n2, convert(n1, radix)) :
        find_radix(n1, convert(n2, radix));
    if(result_radix != -1){
        printf("%lld", result_radix);
    }else{
        printf("Impossible");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值