Hive语法内关于With as 的数据是否会缓存到内存分析

本文探讨了Hive中的WITH AS(公用表表达式)在UNION ALL中的使用情况,指出Hive不会自动将计算结果缓存为临时表,除非设置`hive.optimize.cte.materialize.threshold`。通过实例解析执行计划,展示了不同设置对性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  WITH AS短语,也叫做子查询部分(subquery factoring),可以定义一个SQL片断,该SQL片断可以被后面的SQL语句引用,从而使SQL语句的可读性更高。

  在关系型数据库中,对于UNION ALL,使用WITH AS定义了一个UNION ALL语句,当该片断被调用2次以上,优化器会自动将该WITH AS短语所获取的数据放入一个Temp表中。

  Hive在后面的版本也引入了WITH AS 这个公用表表达式(CTE)语法糖,但是对于后面语句的多次引用是否会继续将该WITH AS短语所获取的数据放入一个Temp表中呢?下面将通过对SQL的执行计划进行分析得到结论。

explain 
with top10 as 
(
select
	a.member_id,
	a.store_id,
	a.store_name,
	count(a.order_id) freq
from
	ads_member_label_p_ordertop10 a 
where
	dt = '20210614'
group by
	a.member_id,
	a.store_id,
	a.store_name
)
select
	*
from
	top10
union all
select
	*
from
	top10

  通过执行上述HQL可以得到如下执行计划:

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-2 depends on stages: Stage-1, Stage-3
  Stage-3 is a root stage
  Stage-0 depends on stages: Stage-2

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: a
            filterExpr: (dt = '20210614') (type: boolean)
            Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: member_id (type: string), order_id (type: string), store_id (type: string), store_name (type: string)
              outputColumnNames: member_id, order_id, store_id, store_name
              Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: count(order_id)
                keys: member_id (type: string), store_id (type: string), store_name (type: string)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                  sort order: +++
                  Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                  Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col3 (type: bigint)
      Execution mode: vectorized
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col2, _col3
          Statistics: Num rows: 12321230 Data size: 8341066198 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe

  Stage: Stage-2
    Map Reduce
      Map Operator Tree:
          TableScan
            Union
              Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
              File Output Operator
                compressed: false
                Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
                table:
                    input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                    output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                    serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
          TableScan
            Union
              Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
              File Output Operator
                compressed: false
                Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
                table:
                    input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                    output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                    serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: a
            filterExpr: (dt = '20210614') (type: boolean)
            Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: member_id (type: string), order_id (type: string), store_id (type: string), store_name (type: string)
              outputColumnNames: member_id, order_id, store_id, store_name
              Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: count(order_id)
                keys: member_id (type: string), store_id (type: string), store_name (type: string)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                  sort order: +++
                  Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                  Statistics: Num rows: 24642460 Data size: 16682132396 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col3 (type: bigint)
      Execution mode: vectorized
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col2, _col3
          Statistics: Num rows: 12321230 Data size: 8341066198 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-2 depends on stages: Stage-1, Stage-3
  Stage-3 is a root stage
  Stage-0 depends on stages: Stage-2

  通过对执行计划进行分析可以得知Stage-1和Stage-3对表ads_member_label_p_ordertop10分别执行了两次WITH AS内逻辑,由STAGE DEPENDENCIES得知而且在Stage-2依赖于Stage-1和Stage-3,且Stage-2中UNOIN操作对表的扫描操作(TableScan)并未进行数据过滤,Stage1-3影响的数据行数均为24642460行。

  所以在Hive内 WITH AS语法默认并不会将执行结果作为临时表存入内存,而是每一次引用都会执行一次WITH AS内的计算逻辑,而MySQL和SqlServer这种关系型数据库执行WITH AS时会将计算结果作为临时表。

  在hive中有一个参数

	hive.optimize.cte.materialize.threshold

  这个参数在默认情况下是-1(关闭的);当开启(大于0),比如设置为2,则如果with…as语句被引用2次及以上时,会把with…as语句生成的table物化,从而做到with…as语句只执行一次,来提高效率。

  将hive.optimize.cte.materialize.threshold设置为1,可以得到如下执行计划

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1
  Stage-3 depends on stages: Stage-0
  Stage-2 depends on stages: Stage-3

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: a
            filterExpr: (dt = '20210620') (type: boolean)
            Statistics: Num rows: 32891415 Data size: 22266423831 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: member_id (type: string), order_id (type: string), store_id (type: string), store_name (type: string)
              outputColumnNames: member_id, order_id, store_id, store_name
              Statistics: Num rows: 32891415 Data size: 22266423831 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: count(order_id)
                keys: member_id (type: string), store_id (type: string), store_name (type: string)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 32891415 Data size: 22266423831 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                  sort order: +++
                  Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                  Statistics: Num rows: 32891415 Data size: 22266423831 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col3 (type: bigint)
      Execution mode: vectorized
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col2, _col3
          Statistics: Num rows: 16445707 Data size: 11133211577 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            Statistics: Num rows: 16445707 Data size: 11133211577 Basic stats: COMPLETE Column stats: NONE
            table:
                input format: org.apache.hadoop.mapred.TextInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
                name: dv_report.top10

  Stage: Stage-0
    Move Operator
      files:
          hdfs directory: true
          destination: hdfs://iphost/tmp/hive/hive/16166a7f-d924-442a-9763-24b59ce050cb/_tmp_space.db/249708d7-bbc6-491b-b871-6b11385798d0

  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: top10
            Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
            Select Operator
              expressions: member_id (type: string), store_id (type: string), store_name (type: string), freq (type: bigint)
              outputColumnNames: _col0, _col1, _col2, _col3
              Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
              Union
                Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                File Output Operator
                  compressed: false
                  Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                  table:
                      input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                      serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
          TableScan
            alias: top10
            Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
            Select Operator
              expressions: member_id (type: string), store_id (type: string), store_name (type: string), freq (type: bigint)
              outputColumnNames: _col0, _col1, _col2, _col3
              Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
              Union
                Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                File Output Operator
                  compressed: false
                  Statistics: Num rows: 2 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                  table:
                      input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                      serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-2
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

  由执行计划可知,在设置参数之后计算结果作为一张临时表存储在hdfs://iphost/tmp/hive/hive/16166a7f-d924-442a-9763-24b59ce050cb/_tmp_space.db/249708d7-bbc6-491b-b871-6b11385798d0路径下,即通过Stage-0阶段将计算结果存入一张临时表内。

<think>嗯,用户让我介绍一下基于Spark SQL的电商用户行为分析。首先,我需要确定用户的需求是什么。可能他们想了解如何利用Spark SQL处理电商数据分析用户行为,从而优化业务策略。用户可能是数据分析师、电商从业者或者刚接触大数据的学生。 首先,我应该解释Spark SQL的基本概念,因为这是基础。Spark SQL作为Apache Spark的模块,主要用于结构化数据处理,支持SQL查询,这对于熟悉SQL的用户来说容易上手。然后,需要说明为什么选择Spark SQL,比如它的分布式计算能力,适合处理电商产生的大规模数据。 接下来,用户行为分析的关键指标。这部分需要分点说明,比如流量分析、转化率、用户留存、用户分群和商品分析。每个指标下要举具体例子,比如PV、UV、跳出率,这样用户能更直观理解。 然后是数据处理的流程。数据来源可能包括日志、数据库、用户操作等,需要清洗和转换,比如处理缺失值、格式转换。之后,用Spark SQL进行ETL,加载到DataFrame或者创建临时表,方便后续分析。 实际应用案例部分,要具体说明如何用SQL查询来实现不同的分析,比如每日PV/UV统计、转化漏斗模型、用户留存率和商品偏好分析。这些例子能帮助用户理解实际操作,可能需要展示一些SQL代码片段,但要注意用正确的格式,比如代码块。 技术优势方面,分布式计算、易用性(SQL支持)、多数据源兼容和性能优化(Catalyst优化器)都是重点。这些点能突出Spark SQL在电商分析中的优势。 最后,应用场景举例,比如个性化推荐、活动效果评估、用户生命周期管理和异常检测。这部分需要联系实际业务,说明分析结果如何应用,提升业务价值。 还要注意用户给的系统级指令,比如数学公式用$...$,独立公式用$$...$$,但用户的问题可能不涉及太多数学公式,所以可能不需要太多。但如果有统计模型或算法,可能需要用LaTeX,比如转化率的计算公式。 需要确保回答结构清晰,分步骤讲解,帮助用户逐步理解。同时,回答要真实可靠,可能需要提到Spark SQL的Catalyst优化器、Tungsten引擎等技术细节,但不要过于深入,保持适中详细度。 可能用户没有说出来的深层需求是,他们可能想实际实施这样的分析系统,所以需要技术细节和实际案例,而不仅仅是理论。因此,在回答中提供具体的SQL示例和应用场景会更有帮助。 还要注意用中文,避免术语混淆,必要时解释专业词汇,比如ETL、DataFrame、Catalyst优化器等,但用户可能已经有一定基础,所以可以适当使用术语,但保持解释简洁。 总结下来,回答的结构应该是:概述Spark SQL,分析的关键指标,处理流程,应用案例,技术优势,应用场景,最后总结。这样逻辑清晰,逐步深入,满足用户的需求。</think>### 基于 Spark SQL 的电商用户行为分析 #### 一、核心概念 1. **Spark SQL 定位** Spark SQL 是 Apache Spark 的核心模块,专为结构化数据处理设计,支持使用 SQL 语法或 DataFrame API 进行数据分析,兼容 Hive、JSON、Parquet 等数据源。 2. **电商行为分析目标** 通过用户行为数据(如浏览、点击、加购、支付)挖掘以下信息: - 用户活跃度与粘性 - 商品热度与转化路径 - 营销活动效果评估 - 用户生命周期价值(LTV) #### 二、数据处理流程 1. **数据采集与存储** - 数据源:用户日志(埋点)、订单数据库、CRM 系统 - 存储格式:HDFS/Hive(日志)、MySQL(事务数据) ```sql -- 示例:Spark SQL 读取 Hive 表 spark.sql("CREATE TEMPORARY VIEW user_logs USING hive OPTIONS (path '/user/hive/warehouse/logs')") ``` 2. **数据清洗与转换** - 处理缺失值:过滤无效记录(如 `user_id IS NULL`) - 格式标准化:时间戳转换、统一编码规则 ```sql -- 示例:清洗异常点击事件 SELECT user_id, item_id, action_time FROM raw_events WHERE action_type = 'click' AND duration > 1000 ``` #### 三、关键分析场景与实现 1. **用户行为路径分析** ```sql -- 统计用户从浏览到支付的转化率 WITH funnel AS ( SELECT user_id, MAX(CASE WHEN action='view' THEN 1 ELSE 0 END) AS viewed, MAX(CASE WHEN action='cart' THEN 1 ELSE 0 END) AS added_to_cart, MAX(CASE WHEN action='pay' THEN 1 ELSE 0 END) AS paid FROM user_actions GROUP BY user_id ) SELECT SUM(viewed) AS total_views, SUM(added_to_cart)/SUM(viewed) AS cart_conversion_rate, SUM(paid)/SUM(added_to_cart) AS payment_conversion_rate FROM funnel ``` 2. **商品关联规则挖掘** 使用 FP-Growth 算法发现频繁共现商品: ```scala import org.apache.spark.ml.fpm.FPGrowth val transactions = spark.sql("SELECT collect_set(item_id) AS items FROM clicks GROUP BY session_id") val fpg = new FPGrowth().setMinSupport(0.01).setMinConfidence(0.3) val model = fpg.fit(transactions) model.associationRules.show() ``` 3. **用户分群(RFM 模型)** ```sql SELECT user_id, NTILE(5) OVER (ORDER BY last_active_date DESC) AS recency, NTILE(5) OVER (ORDER BY order_count DESC) AS frequency, NTILE(5) OVER (ORDER BY total_spend DESC) AS monetary FROM user_profiles ``` #### 四、性能优化策略 1. **存储层优化** - 使用 Parquet 列式存储(压缩比提升 40%+) - 分区策略:按 `event_date` 分区,减少 I/O 2. **计算层优化** - 启用 Adaptive Query Execution (AQE) - 缓存热点数据集:`spark.catalog.cacheTable("user_actions")` 3. **SQL 调优技巧** - 避免 `SELECT *`,明确指定字段 - 用 `BROADCAST JOIN` 处理小表关联 - 使用窗口函数替代多重子查询 #### 五、典型输出与应用 1. **可视化报表** - 实时看板:使用 Grafana 展示每分钟 UV/PV - 漏斗分析图:展示关键转化节点流失率 - 热力图:用户活跃时段分布 2. **业务决策支持** - 根据商品关联规则优化捆绑销售策略 - 针对高 RFM 值用户推送 VIP 权益 - 识别低转化页面进行 UI 改版 #### 六、技术优势对比 | 特性 | Spark SQL | 传统 RDBMS | |---------------------|--------------------|------------------| | 数据规模 | PB 级 | TB 级 | | 扩展性 | 线性扩展 | 垂直扩展 | | 计算范式 | 批流一体 | 仅批处理 | | 容错机制 | RDD 血缘回溯 | 事务日志 | #### 附:数学建模示例(用户价值预测) 用户价值评分模型可表示为: $$ \text{Score} = \alpha \cdot \text{log}(1+R) + \beta \cdot F + \gamma \cdot \frac{M}{M_{\text{max}}} $$ 其中: - $R$: 最近一次消费时间(Recency) - $F$: 消费频率(Frequency) - $M$: 消费金额(Monetary) - $\alpha,\beta,\gamma$ 为权重系数 通过 Spark ML 实现参数调优: ```scala val lr = new LinearRegression() .setFeaturesCol("scaledFeatures") .setLabelCol("value_score") val pipeline = new Pipeline().setStages(Array(assembler, scaler, lr)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值