[蓝桥杯][2013年第四届真题] 危险系数(dfs)

题目描述:


抗日战争时期,冀中平原的地道战曾发挥重要作用。 
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。 
我们来定义一个危险系数DF(x,y): 
对于两个站点x和y  (x  !=  y),  如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。 
本题的任务是:已知网络结构,求两站点之间的危险系数。 

输入:

输入数据第一行包含2个整数n(2  < =  n  < =  1000),  m(0  < =  m  < =  2000),分别代表站点数,通道数; 
接下来m行,每行两个整数  u,v  (1  < =  u,  v  < =  n;  u  !=  v)代表一条通道; 
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u,  v)。 

输出:

一个整数,如果询问的两点不连通则输出-1.

样例输入:

7  6
1  3
2  3
3  4
3  5
4  5
5  6
1  6 

样例输出:

2

大致思路:

dfs,从起点向终点开始搜索,找到所有的路径条数,每找到一条路径便记录一遍该路径经过的点。

当找完所有路径后对每一个点进行判断,如果该点被访问的次数等于总路径数,则该点为一必须经过的点,即关键点。

(要注意减去起点和终点)

代码:

#include<bits/stdc++.h>
using namespace std;
int m,n;
int dp[1004][1004];
int x,y;
int sum=0;
int vis[1004];
int co[1004];
void dfs(int a)
{
    if(a==y)
    {
        sum++;
        for(int t=1;t<=n;t++)
        {
            if(vis[t]==1)
                co[t]++;
        }
        return;
    }
    int i,j;
    for(i=1;i<=n;i++)
    {
       if(dp[a][i]==1&&vis[i]==0)
       {
           vis[i]=1;
           dfs(i);
           vis[i]=0;
       }
    }
}
int main()
{
    cin>>n>>m;
    int i,a,b;
    for(i=0;i<m;i++)
    {
        cin>>a>>b;
        dp[a][b]=dp[b][a]=1;
    }
    cin>>x>>y;
    vis[x]=1;
    dfs(x);
    int ans=0;
    for(i=1;i<=n;i++)
        if(co[i]==sum)
        ans++;
        if(sum>0)
        cout<<ans-2;
        else cout<<"-1";
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值