题目描述:
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入:
输入数据第一行包含2个整数n(2 < = n < = 1000), m(0 < = m < = 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 < = u, v < = n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出:
一个整数,如果询问的两点不连通则输出-1.
样例输入:
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出:
2
大致思路:
dfs,从起点向终点开始搜索,找到所有的路径条数,每找到一条路径便记录一遍该路径经过的点。
当找完所有路径后对每一个点进行判断,如果该点被访问的次数等于总路径数,则该点为一必须经过的点,即关键点。
(要注意减去起点和终点)
代码:
#include<bits/stdc++.h>
using namespace std;
int m,n;
int dp[1004][1004];
int x,y;
int sum=0;
int vis[1004];
int co[1004];
void dfs(int a)
{
if(a==y)
{
sum++;
for(int t=1;t<=n;t++)
{
if(vis[t]==1)
co[t]++;
}
return;
}
int i,j;
for(i=1;i<=n;i++)
{
if(dp[a][i]==1&&vis[i]==0)
{
vis[i]=1;
dfs(i);
vis[i]=0;
}
}
}
int main()
{
cin>>n>>m;
int i,a,b;
for(i=0;i<m;i++)
{
cin>>a>>b;
dp[a][b]=dp[b][a]=1;
}
cin>>x>>y;
vis[x]=1;
dfs(x);
int ans=0;
for(i=1;i<=n;i++)
if(co[i]==sum)
ans++;
if(sum>0)
cout<<ans-2;
else cout<<"-1";
}