题目链接
题解如下:
本人的做法比题解麻烦一点,也由于一个小地方的错误,导致博主调了很久。。。。。
其实也没什么好说的,细节题。
注意细节就行了,唯一的思维点就是转化问题,这个转化以前都没有接触过,是我太笨了。。
主要计算过程都写了注释
细节见代码:
#include<bits/stdc++.h>
typedef long long LL;
#define fi first
#define se second
#define pb push_back
using namespace std;
const int N=1e6 + 11;
const LL mod=998244353;
int n;
vector<int>v[N];
LL f[N],siz[N];
LL ans=0,tot=0;
LL sum[N];
void dfs(int now,int pre,LL dep){
f[now]=dep;
tot+=f[now];
siz[now]=1;
sum[now]=f[now];
for(auto k:v[now]){
if(k==pre)continue;
dfs(k,now,dep+1);
siz[now]+=siz[k];
//算一下子树大小
sum[now]+=sum[k];
//算一下子树的深度之和
sum[now]%=mod;
}
}
void dfs1(int now,int pre){
LL x=1ll*siz[now]*(siz[now]-1)/2;
LL mid=0;
int sta=0;
int G=0;
for(auto k:v[now]){
if(k==pre)continue;
x=x-1ll*siz[k]*(siz[k]-1)/2;
if(sta)ans=ans-4ll*(sum[k]*G%mod+1ll*siz[k]*mid%mod)%mod*f[now]%mod,ans=(ans+100ll*mod)%mod;
//特别注意这地方的计算,k这个子树上的所有点都被加了G次,每个点都会加一个mid,和起来就是这么多
mid+=sum[k];
sta=1;
G+=siz[k];
//更新一下mid,G,sta
mid%=mod;
ans=ans-4ll*f[now]%mod*((1ll*siz[k]*f[now]%mod+sum[k])%mod)%mod;
//这地方是以now为lca,在k这个子树上选一个点时候的贡献。
ans=ans+100ll*mod;ans%=mod;
dfs1(k,now);
}
ans=ans+4ll*x%mod*f[now]%mod*f[now]%mod;ans%=mod;
//这里是多少对{x,y} 的lca是now,算一下贡献
}
int main() {
scanf("%d",&n);
for (int i=1;i<n;i++) {
int s,t;
scanf("%d%d",&s,&t);
v[s].pb(t);
v[t].pb(s);
}
dfs(1,0,0);
for(int i=1;i<=n;i++){
ans+=1ll*f[i]*f[i]%mod*(n-1)%mod;
//这是第一部分
ans+=2ll*f[i]*((tot-f[i])%mod)%mod;
//这是第二部分
ans%=mod;
tot-=f[i];
}
dfs1(1,0);
ans=ans*2ll%mod;
//因为之前算的是一半,所以要*2
ans=(ans+100ll*mod)%mod;
printf("%lld\n",ans);
return 0;
}