∑ i = 1 n ∑ j = 1 n μ ( i j ) = ∑ i = 1 n μ ( i ) ∑ j = 1 n μ ( j ) [ g c d ( i , j ) = 1 ] = ∑ i = n n μ ( i ) ∑ j = 1 n μ ( j ) ∑ d ∣ g c d ( i , j ) μ ( d ) 更 改 枚 举 顺 序 得 : ∑ i = n n μ ( i ) ∑ d ∣ i μ ( d ) ∑ j = 1 ⌊ n d ⌋ μ ( j d ) 再 次 更 改 枚 举 顺 序 得 : ∑ i = 1 n μ ( i ) ∑ j = 1 ⌊ n i ⌋ μ ( i j ) ∑ j = 1 ⌊ n i ⌋ μ ( i j ) 设 S ( n , m ) = ∑ j = 1 m μ ( j n ) 代 入 原 式 得 : ∑ i = 1 n μ ( i ) S 2 ( i , n i ) 通 过 预 处 理 之 后 可 以 O ( n ) 计 算 每 组 的 答 案 。 但 是 题 目 显 然 是 要 处 理 出 所 有 答 案 。 我 们 观 察 发 现 计 算 答 案 一 定 是 这 样 的 : \sum\limits_{i=1}^n\sum\limits_{j=1}^n\mu(ij)\\ =\sum\limits_{i=1}^n\mu(i)\sum\limits_{j=1}^n\mu(j)[gcd(i,j)=1]\\ =\sum\limits_{i=n}^n\mu(i)\sum\limits_{j=1}^n\mu(j)\sum\limits_{d|gcd(i,j)}\mu(d)\\ 更改枚举顺序得:\sum\limits_{i=n}^n\mu(i) \sum\limits_{d|i}\mu(d)\sum\limits_{j=1}^{\lfloor \frac{n}{d} \rfloor}\mu(jd)\\ 再次更改枚举顺序得:\sum\limits_{i=1}^n \mu(i) \sum\limits_{j=1}^{\lfloor \frac{n}{i} \rfloor}\mu(ij) \sum\limits_{j=1}^{\lfloor \frac{n}{i} \rfloor}\mu(ij)\\ 设S(n,m)=\sum\limits_{j=1}^m\mu(jn) \\ 代入原式得:\sum\limits_{i=1}^n\mu(i)S^2(i,\frac{n}{i})\\ 通过预处理之后可以O(n)计算每组的答案。但是题目显然是要处理出所有答案。 我们观察发现计算答案一定是这样的: i=1∑nj=1∑nμ(ij)=i=1∑nμ(i)j=1∑nμ(j)[gcd(i,j)=1]=i=n∑nμ(i)j=1∑nμ(j)d∣gcd(i,j)∑μ(d)更改枚举顺序得:i=n∑nμ(i)d∣i∑μ(d)j=1∑⌊dn⌋μ(jd)再次更改枚举顺序得:i=1∑nμ(i)j=1∑⌊in⌋μ(ij)j=1∑⌊in⌋μ(ij)设S(n,m)=j=1∑mμ(jn)代入原式得:i=1∑nμ(i)S2(i,in)通过预处理之后可以O(n)计算每组的答案。但是题目显然是要处理出所有答案。我们观察发现计算答案一定是这样的:
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ans[i]+=mu[j]*S(j,i/j)*S(j,i/j);
}
}
细 心 观 察 之 后 就 能 发 现 , 对 于 一 个 j 来 说 他 能 贡 献 给 区 间 [ l , r ] ( l / j = r / j ) 一 个 相 同 的 值 , 那 么 做 法 就 很 显 然 了 , 预 处 理 出 m u 和 S 把 所 有 答 案 算 出 来 就 能 O ( 1 ) 回 答 。 细心观察之后就能发现,对于一个j来说他能贡献给区间[l,r](l/j=r/j)一个相同的值,那么做法就很显然了,预处理出mu和S把所有答案\\算出来就能O(1)回答。 细心观察之后就能发现,对于一个j来说他能贡献给区间[l,r](l/j=r/j)一个相同的值,那么做法就很显然了,预处理出mu和S把所有答案算出来就能O(1)回答。
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 5e4 + 10;
#define fi first
#define se second
#define pb push_back
#define wzh(x) cerr<<#x<<'='<<x<<endl;
int a[N],cnt,p[N],mu[N];
LL phi[N];
void P(){
phi[1]=mu[1]=1;
for(int i=2;i<N;i++){
if(!p[i])a[++cnt]=i,mu[i]=-1,phi[i]=i-1;
for(int j=1;j<=cnt&&1ll*a[j]*i<N;j++){
p[a[j]*i]=1;
if(i%a[j]==0){
mu[i*a[j]]=0;
phi[i*a[j]]=a[j]*phi[i];
break;
}
mu[a[j]*i]=-mu[i];
phi[i*a[j]]=phi[i]*phi[a[j]];
}
}
}
vector<int>v[50003];
int L[N];
int main() {
ios::sync_with_stdio(false);
P();int cn=0;
for(int i=1;i<=50000;i++){
for(int j=1;j<=50000/i;j++){
v[i].pb(mu[j*i]);
}
for(int j=1;j<v[i].size();j++){
v[i][j]+=v[i][j-1];
}
}
int t,n;
for(int i=1;i<=50000;i++){
for(int j=0,k=min(i-1,50000);j<=50000;){
int no=k/i;
if(no-1<(int)v[i].size()){
assert(no-1<(int)v[i].size());
int d=(no>=1)?(v[i][no-1]*v[i][no-1]):0;
int now=mu[i]*d;
assert(k+1<=50001);
L[j]+=now;L[k+1]-=now;
}
j=k+1;
k+=i;
k=min(k,50000);
}
}
for(int i=2;i<=50000;i++)L[i]+=L[i-1];
for(cin>>t;t;t--){
cin>>n;
cout<<L[n]<<'\n';
}
return 0;
}