牛客挑战赛46 E.反演

d ( n ) = ∑ i = 1 n [ n m o d    i = 0 ] , s ( n ) = ∑ i = 1 n n i d(n)=\sum\limits_{i=1}^n[n\mod i=0],s(n)=\sum\limits_{i=1}^n\frac{n}{i} d(n)=i=1n[nmodi=0],s(n)=i=1nin

a n s = ∑ i = 1 n ∑ j ∣ m d ( i j ) = ∑ i = 1 n ∑ j ∣ m ∑ x ∣ i ∑ y ∣ j [ ( x , y ) = 1 ] ans=\sum\limits_{i=1}^n \sum\limits_{j|m}d(ij)=\sum\limits_{i=1}^n \sum\limits_{j|m}\sum\limits_{x|i}\sum\limits_{y|j}[(x,y)=1] ans=i=1njmd(ij)=i=1njmxiyj[(x,y)=1]

考虑先枚举 ( x , y ) (x,y) (x,y)得:

a n s = ∑ i = 1 n ∑ j ∣ m [ ( i , j ) = 1 ] ⌊ n i ⌋ d ( m j ) ans=\sum\limits_{i=1}^n\sum\limits_{j|m}[(i,j)=1]\lfloor \frac{n}{i}\rfloor d(\frac{m}{j}) ans=i=1njm[(i,j)=1]ind(jm)

a n s = ∑ i = 1 n ∑ j ∣ m ∑ q ∣ g c d ( i , j ) μ ( q ) ⌊ n i ⌋ d ( m j ) ans=\sum\limits_{i=1}^n\sum\limits_{j|m} \sum\limits _{q|gcd(i,j)}\mu(q)\lfloor \frac{n}{i}\rfloor d(\frac{m}{j}) ans=i=1njmqgcd(i,j)μ(q)ind(jm)

考虑先枚举 q q q

a n s = ∑ q ∣ m μ ( q ) s ( n q ) ∑ q ∣ x , x ∣ m d ( m x ) ans=\sum\limits_{q|m}\mu(q) s(\frac{n}{q}) \sum\limits_{q|x,x|m}d(\frac{m}{x}) ans=qmμ(q)s(qn)qx,xmd(xm)

由于莫比乌斯函数的性质,我们只需要枚举所有莫比乌斯函数非零的因子d(即质因子最高幂次为1)。

s s s函数的答案可以分块计算。

而后半部分的因子个数和可以在dfs的过程中计算出来。

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 2e5 + 10;
#define fi first
#define se second
#define pb push_back
#define wzh(x) cerr<<#x<<'='<<x<<endl;
LL n;
int m;
const int mod=998244353;
LL cal(LL x){
  LL y=0;
  for(LL i=1,j;i<=x;i=j+1){
    j=min(x,x/(x/i));
    y+=(j-i+1)%mod*(x/i)%mod;
    y%=mod;
  }
  return y;
}
vector<pair<int,int>>pr;
LL ans;
void dfs(int now,int mu,LL val,LL d,LL oh){
  if(now==pr.size()){
    ans+=mu*cal(n/d)%mod*val%mod*oh%mod;
    ans%=mod;
    return;
  }
    //不选这个数
  dfs(now+1,mu,val,d,oh*((pr[now].second+2)*(pr[now].se+1)/2)%mod);
  if(d*pr[now].fi<=n){//选这个数
    dfs(now+1,-mu,val*((pr[now].second+1)*(pr[now].se)/2)%mod,d*pr[now].fi,oh);
  }
}
int main() {
  ios::sync_with_stdio(false);
  cin>>n>>m;
  auto is_pr =[&](int x){
    for(int i=2;i<x;i++){
      if(x%i==0)return 0;
    }
    return 1;
  };
  for(int i=2;i<=m;i++){
    if(is_pr(i)){
      int z=m,q=0;
      while(z){
        q+=z/i;
        z/=i;
      }
      pr.pb({i,q});
    }
  }
  dfs(0,1,1,1,1);
  cout<<ans<<'\n';
  return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值