进程间通信
1.socket
2.文件
3.内存
1.socket
- socket就是进程间的通信
一个进程通过socket把数据发到网络上去,另一个进程把数据下载到本地。可以是同一台电脑上的多个进程,也可以是不同的电脑的多个进程。
2.文件
文件保存数据,防守丢失
- 通过文件的读写操作也可以完成进程间的通信
但是因为文件是在硬盘里面,运行速度很慢。
3.内存
先进先出,后进后出是队列。
队列是内存区域中开辟出的一块内存,存储数据。
-
内存的读写就是进程读写,就是进程间的通信。
内存运行速度很快。 -
队列的作用一是通信,二是解耦。
如果让两个进程直接对接接口,会很复杂,程序变了,很难去修改。 但都让进程与队列对接,一个进程传输数据到队列,一个进程提取数据到队列,两个进程耦合性低,想怎么改怎么改。
原来的方案:下载完后再处理
现在队列方案:进程A使劲下载到队列,进程B使劲读取队列中的数据
比如说听音乐看视频,进程A从网络上下载数据一边加载,进程B使劲下载到本地一边播放。
队列的方法
1.导入队列模块
2.创建一个队列对象
3.队列的各种方法
1.导入队列模块
from multiprocessing import Queue
2.创建一个队列对象
# 1.创建一个队列
q = multiprocessing.Queue()
3.队列的各种方法
q.put() 输入数据到队列
q.full() 判断当前队列是否满
q.empty() 判断当前队列是否空
q.get() 从队列中得到数据
代码实现:(把网络上的数据假定:data[11,22,33,44]通过队列发送到另一个进程中打印)
import multiprocessing
def download_from_web(q):
"""下载数据"""
# 模拟从网上下载的数据
data = [11,22,33,44]
# 向队列中写入数据
for temp in data:
q.put(temp)
print ("---下载器已经下载完了数据并且存入到队列中----")
def analysis_data(q):
"""数据处理"""
waiting_analysis_data = list()
# 从队列中获取数据
while True:
data = q.get()
waiting_analysis_data.append(data)
if q.empty():
break
print (waiting_analysis_data)
def main():
# 1.创建一个队列
q = multiprocessing.Queue()
# 2.创建多个进程,将队列的引用当做实参进行传递到里面
p1 = multiprocessing.Process(target=download_from_web,args=(q,))
p2 = multiprocessing.Process(target=analysis_data,args=(q,))
p1.start()
p2.start()
if __name__ == '__main__':
main()