题意:求找到两个串使得,两个串的总和最长。
这两个串每个都要满足相邻元素,要么%7相等,要么difference 为1
解:
很容易想到dp[i][j],一个以i结尾另一个以j结尾的最大值,
1、假设******固定i*****的话,那么每次转移只会从四个方向转移过来。
对于dp[i][j] 转移过来的 dp[i][k] k<j 其中dp[i][k]
(1)maxnum[a[j]+1] 在dp[i][k]中,a[k]==a[j]+1里的dp[i][k]最大的。
(2)maxnum[a[j]-1]同(1)
(3)maxmod[a[j]%7]a[k]和a[j]同余情况下最大的,
(4)新开一个串dp[i][0]
2.上面就是大框架,那么还要考虑重复的问题
(1)就像for循环如何防止重复编译一堆i,j 方法就是for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)
(2)这样避免重复,容易忘记dp[j][i]=dp[i][j],这样后面当i遍历到这个j时,依然有正确的值。
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof a)
#define en '\n'
const int maxn = 5e3+3;
const int maxm= 1e5+3;
#define pb push_back
using namespace std;
typedef long long ll;
int rd(){int tem;scanf("%d",&tem);return tem;}
int dp[maxn][maxn],a[maxn],n;
int maxnum[maxm],maxmod[7];
signed main()
{
#ifdef local
freopen("input2.txt","r",stdin);
#endif // local
cin>>n;
for(int i=1;i<=n;i++){
a[i]=rd();
}
int ans=0;
for(int i=0;i<=n;i++){
mem(maxmod,0),mem(maxnum,0);
for(int j=1;j<=i;j++){
maxnum[a[j]]=max(maxnum[a[j]],dp[i][j]);
maxmod[a[j]%7]=max(maxmod[a[j]%7],dp[i][j]);
}
for(int j=i+1;j<=n;j++){
dp[i][j]=max(dp[i][j],dp[i][0])+1;
dp[i][j]=max(dp[i][j],maxnum[a[j]-1]+1);
dp[i][j]=max(dp[i][j],maxnum[a[j]+1]+1);
dp[i][j]=max(dp[i][j],maxmod[a[j]%7]+1);
dp[j][i]=dp[i][j];
maxmod[a[j]%7]=max(maxmod[a[j]%7],dp[i][j]);
maxnum[a[j]]=max(maxnum[a[j]],dp[i][j]);
ans=max(ans,dp[i][j]);
}
}cout<<ans<<en;
return 0;
}