2017湘潭邀请赛 C Intersection 线性基

问有多少个数可以同时被 两个集合的子集异或出来(子集包括空集)

解:

答案:求A的线性基个数+B的线性基合数-merge(A,B)的线性基的个数,这个数的2的n次方。

刚开始想到一个错误的思路,用A集合的线性基去看能不能在B的线性基中表示,但是这样是错误的。

考虑一种情况A:1,3 B:2,4 

A集合中的线性基就可以是1,3 但是这两个线性基在B中都不可以被表示,显然答案错误。

 

#include<bits/stdc++.h>

#define ll long long
using namespace std;
struct L_B{
    long long d[65],p[65];
    int cnt;
    L_B()
    {
        memset(d,0,sizeof(d));
        memset(p,0,sizeof(p));
        cnt=0;
    }
    bool insert(long long val)
    {
        for (int i=62;i>=0;i--)
            if (val&(1LL<<i))
            {
                if (!d[i])
                {
                    d[i]=val;
                    break;
                }
                val^=d[i];
            }
        return val>0;
    }
    long long query_max()
    {
        long long ret=0;
        for (int i=62;i>=0;i--)
            if ((ret^d[i])>ret)
                ret^=d[i];
        return ret;
    }
    long long query_min()
    {
        for (int i=0;i<=62;i++)
            if (d[i])
                return d[i];
        return 0;
    }
    void rebuild()
    {
        for (int i=62;i>=0;i--)
            for (int j=i-1;j>=0;j--)
                if (d[i]&(1LL<<j))
                    d[i]^=d[j];
        for (int i=0;i<=62;i++)
            if (d[i])
                p[cnt++]=d[i];
    }
    long long kthquery(long long k)
    {
        int ret=0;
        if (k>=(1LL<<cnt))
            return -1;
        for (int i=62;i>=0;i--)
            if (k&(1LL<<i))
                ret^=p[i];
        return ret;
    }
    bool cunzai(ll x){
        for(int i=62;i>=0;--i){
            if((x>>i)&1){
                x=x^d[i];
            }
            if(x==0)return 1;
        }
        return 0;
    }
};
L_B merge(const L_B &n1,const L_B &n2)
{
    L_B ret=n1;
    for (int i=62;i>=0;i--)
        if (n2.d[i])
            ret.insert(n1.d[i]);
    return ret;
}

ll er [70];
#define en '\n'
int main(){
    #ifdef local
    freopen("input2.txt","r",stdin);
    #endif // local
    int n;
    er[0]=1;
    for(int i=1;i<=62;i++){
        er[i]=(er[i-1]<<1);
    }
    while(cin>>n){
    L_B lb1,lb2,lb3;
    for(int i=1;i<=n;i++){
        ll tem1;
        cin>>tem1;lb1.insert(tem1),lb3.insert(tem1);
    }
    for(int i=1;i<=n;i++){
        ll tem2;
        cin>>tem2;lb2.insert(tem2),lb3.insert(tem2);
    }
    int ans=0;
    for(int i=62;i>=0;--i){
        if(lb1.d[i])ans+=1;
        if(lb2.d[i])ans+=1;
        if(lb3.d[i])ans-=1;
    }
    cout<<er[ans]<<en;
    }
}

 

数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值