问有多少个数可以同时被 两个集合的子集异或出来(子集包括空集)
解:
答案:求A的线性基个数+B的线性基合数-merge(A,B)的线性基的个数,这个数的2的n次方。
刚开始想到一个错误的思路,用A集合的线性基去看能不能在B的线性基中表示,但是这样是错误的。
考虑一种情况A:1,3 B:2,4
A集合中的线性基就可以是1,3 但是这两个线性基在B中都不可以被表示,显然答案错误。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
struct L_B{
long long d[65],p[65];
int cnt;
L_B()
{
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
cnt=0;
}
bool insert(long long val)
{
for (int i=62;i>=0;i--)
if (val&(1LL<<i))
{
if (!d[i])
{
d[i]=val;
break;
}
val^=d[i];
}
return val>0;
}
long long query_max()
{
long long ret=0;
for (int i=62;i>=0;i--)
if ((ret^d[i])>ret)
ret^=d[i];
return ret;
}
long long query_min()
{
for (int i=0;i<=62;i++)
if (d[i])
return d[i];
return 0;
}
void rebuild()
{
for (int i=62;i>=0;i--)
for (int j=i-1;j>=0;j--)
if (d[i]&(1LL<<j))
d[i]^=d[j];
for (int i=0;i<=62;i++)
if (d[i])
p[cnt++]=d[i];
}
long long kthquery(long long k)
{
int ret=0;
if (k>=(1LL<<cnt))
return -1;
for (int i=62;i>=0;i--)
if (k&(1LL<<i))
ret^=p[i];
return ret;
}
bool cunzai(ll x){
for(int i=62;i>=0;--i){
if((x>>i)&1){
x=x^d[i];
}
if(x==0)return 1;
}
return 0;
}
};
L_B merge(const L_B &n1,const L_B &n2)
{
L_B ret=n1;
for (int i=62;i>=0;i--)
if (n2.d[i])
ret.insert(n1.d[i]);
return ret;
}
ll er [70];
#define en '\n'
int main(){
#ifdef local
freopen("input2.txt","r",stdin);
#endif // local
int n;
er[0]=1;
for(int i=1;i<=62;i++){
er[i]=(er[i-1]<<1);
}
while(cin>>n){
L_B lb1,lb2,lb3;
for(int i=1;i<=n;i++){
ll tem1;
cin>>tem1;lb1.insert(tem1),lb3.insert(tem1);
}
for(int i=1;i<=n;i++){
ll tem2;
cin>>tem2;lb2.insert(tem2),lb3.insert(tem2);
}
int ans=0;
for(int i=62;i>=0;--i){
if(lb1.d[i])ans+=1;
if(lb2.d[i])ans+=1;
if(lb3.d[i])ans-=1;
}
cout<<er[ans]<<en;
}
}