欧拉函数(初识)

83 篇文章 10 订阅

欧拉函数,用φ(n)表示

欧拉函数是求小于等于n的数中与n互质的数的数目

比如φ(12)

把12质因数分解,12=2*2*3,其实就是得到了2和3两个质因数

然后把2的倍数和3的倍数都删掉

2的倍数:2,4,6,8,10,12

3的倍数:3,6,9,12

本来想直接用12 - 12/2 - 12/3

但是6和12重复减了

所以还要把即是2的倍数又是3的倍数的数加回来 (>﹏<)

所以这样写12 - 12/2 - 12/3 + 12/(2*3)

这叫什么,这叫容斥啊,容斥定理听过吧

比如φ(30),30 = 2*3*5

所以φ(30) = 30 - 30/2 - 30/3 - 30/5 + 30/(2*3) + 30/(2*5) + 30/(3*5) - 30/(2*3*5)

但是容斥写起来好麻烦( ̄. ̄)

有一种简单的方法

φ(12)   =   12*(1 - 1/2)*(1 - 1/3)                 =   12*(1 - 1/2 - 1/3 + 1/6)

φ(30)   =   30*(1 - 1/2)*(1 - 1/3)*(1 - 1/5)   =   30*(1 - 1/2 - 1/3 - 1/5 + 1/6 + 1/10 + 1/15 - 1/30)

你看( •̀∀•́ ),拆开后发现它帮你自动帮你容斥好
所以φ(30)的计算方法就是先找30的质因数
分别是2,3,5
然后用30* 1/2 * 2/3 * 4/5就搞定了
顺便一提,phi(1) = 1
代码如下:(不打表)
//欧拉函数
int phi(int x){
    int ans = x;
    for(int i = 2; i*i <= x; i++){
        if(x % i == 0){
            ans = ans / i * (i-1);
            while(x % i == 0) x /= i;
        }
    }
    if(x > 1) ans = ans / x * (x-1);
    return ans;
}
(phi就是φ的读音)

这个的复杂度是O(√n),如果要你求n个数的欧拉函数,复杂度是O(n√n),这也太慢了
有更快的方法
跟埃筛素数差不多(打表)
#include<cstdio>
const int N = 100000 + 5;
int phi[N];
void Euler(){
    phi[1] = 1;
    for(int i = 2; i < N; i ++){
        if(!phi[i]){
            for(int j = i; j < N; j += i){
                if(!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i-1);
            }
        }
    }
}
int main(){
    Euler();
}

另一种,比上面更快的方法(还不太懂,要有哪位大神看到鄙人的希望可以评论教教我)

需要用到如下性质

p为质数
1. phi(p)=p-1   因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质 

2. 如果i mod p = 0, 那么 phi(i * p)= phi(i)  *   p         (不太会证明)
        理解:i mod p==0,p是i的一个因子,且p为质数,i*p后i*p相对于i来说不会出现新的素因子。可以举个例子看看。

3.若i mod p ≠0,  那么 phi( i * p )=phi(i) * ( p-1 )   

        证明:  i mod p 不为0且p为质数, 所以 i与p互质, 那么根据 欧拉函数 的积性 phi(i * p)=phi(i) * phi(p)  其中phi(p)=p-1即第一条性质
#include<cstdio>
using namespace std;
const int N = 1e6+10 ;
int phi[N], prime[N];
int tot;//tot计数,表示prime[N]中有多少质数 
void Euler(){
    phi[1] = 1;
    for(int i = 2; i < N; i ++){
        if(!phi[i]){
            phi[i] = i-1;
            prime[tot ++] = i;
        }
        for(int j = 0; j < tot && 1ll*i*prime[j] < N; j ++){
            if(i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j]-1);
            else{
                phi[i * prime[j] ] = phi[i] * prime[j];
                break;
            }
        }
    }
}
 
int main(){
    Euler();
}
最后说下

a^b % p  不等价  (a%p)^(b%p) % p

因为

a^φ(p) ≡ 1 (mod p)

所以

a^b % p  =  (a%p)^(b%φ(p)) % p

(欧拉函数前提是a和p互质)

如果p是质数

直接用这个公式

又发现了一个新公式,貌似可以摆脱a和p互质的束缚,让我们来命名为:超欧拉取模进化公式


参考链接:https://www.cnblogs.com/linyujun/p/5194170.html


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值