POJ 3421(素数+排列组合)

7人阅读 评论(1) 收藏 举报
分类:

题意让我看懵了半天
借鉴了一位大神的思路:
由于在手机上看没法发送链接,所以就将他的思路写在下面了

题意:

给一个正整数X,求X的因子组成的链的最大长度m,和所有长度为m的链的个数

1 = X0, X1, X2, …, Xm = X
X0固定是1。要求满足:

X(i+1)>X(i),且X(i+1)能够整除X(i)。

X是2的20次方。。。。。!!!!?

举例:

如X =10,那么它的因子组成的链有:

1 10

1 2 10(分别为X0,X1,X2)(照题目意思长度为2而不是3。。。)

1 5 10

所以结果,最大长度为2,长度为2的链有2条。

如X=100,它有很多个因子,也有很多条链,比如:

1 100

1 50 100

1 2 20 100

1 5 50 100

1 2 4 20 100

等等。。。

不过!最大的长度为4,如果还不知道算法,不信的话可以枚举一下,没有超过4的链了。。

那么100的最大长度为4,长度为4的链有6条。

题解:

我们可以看到,从X1开始,每个数都必定能整除前面的所有的数。

所以我们可以想到质因子这个东西,即它既是质数,又是X的因子。

因为我们要求的是长度最长的链,就要找出所有的质因子和每个质因子对应的个数,然后从1开始每次乘以其中的一个质因子,最后就可以得到X,并且链是最长的。

那么数量是多少条呢?其实就是所有质因子的排列组合

从1开始乘以逐个乘以排好后的质因子,最后得出的链就是不同的,有多少种排列组合,就有多少条,,

也许我的表达能力有问题,如果还看不懂,我们拿X=100,来举个例子。

100有哪些质因子,这个简单。

质因子有2和5,100可以分解成2*2*5*5,即有2个2,2个5

那么2 2 5 5的排列组合是多少?高中知识!不要问为什么

A(4,4)/A(2,2)/A(2,2),即4!/(2!*2!),即4的全排列除以(2的个数的全排列和5的个数的全排列)

结果为6:

2 2 5 5

2 5 2 5

2 5 5 2

5 2 2 5

5 2 5 2

5 5 2 2

分别对应的链呢?!

1 2 4 20 100

1 2 10 20 100

1 2 10 50 100

1 5 10 20 100

1 5 10 50 100

1 5 25 50 100

是不是!!这就出来了,就是这么做的。

有没有一种恍然大悟的感觉,
反正我有;
ac代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<stdlib.h>
#include<string.h>
#include<vector>
#include<numeric>

#define pi acos(-1.0)

using namespace std;

typedef unsigned long long ULL;
typedef vector<int> VI;

ULL factor(ULL n)
{
    ULL sum=1;
    for(int i=2;i<=n;i++)
    {
        sum*=i;
    }
    return sum;
}

VI prime_factor(ULL n)
{
    VI v;
    for(int i=2;i*i<=n;i++)
    {
        int cnt=0;
        while(n%i==0)
        {
            cnt++;
            n/=i;
        }
        v.push_back(cnt);
    }
    if(n!=1)
        v.push_back(1);
    return v;
}

int main()
{
    ios::sync_with_stdio(false);cin.tie(0);

    ULL n;
    while(cin>>n)
    {
        ULL sum,fac=1;
        VI v=prime_factor(n);
        sum=accumulate(v.begin(),v.end(),0);
        for(VI::iterator it=v.begin();it!=v.end();it++)
            fac*=factor(*it);
        cout<<sum<<" "<<factor(sum)/fac<<endl;
    }
    return 0;
}
查看评论

POJ 3421 X-factor Chains(数论)(筛法)()

X-factor Chains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6370   Accepted: ...
  • huatian5
  • huatian5
  • 2016年05月21日 22:31
  • 617

poj3421 一道很无语的题,数据大,数学没学好啊

题意: 给你一个X,令X0等于1,Xm等于X; 然后是一个序列:X0,X1,,,Xm; Xi < X(i+1),Xi整除X(i+1)(即从X0到Xm都是X的因子); 让你求这个序列的最大长度,...
  • a1083595345
  • a1083595345
  • 2015年10月22日 20:37
  • 663

POJ3421 X-factor Chains【分解质因子+组合数学】

问题链接:POJ3421 X-factor Chains。 题意简述:输入正整数x,求x的因子组成的满足任意前一项都能整除后一项的序列的最大长度,以及所有不同序列的个数。 问题分析: 首先要对x进行...
  • tigerisland45
  • tigerisland45
  • 2017年05月20日 08:56
  • 470

POJ_3421_X-factor Chains(素数筛法)

题意:给你一个数X,将X分解成1~X的因子数列,前一个数可以整数后一个数,求满足条件的最大链长以及有多少条这样长的链。...
  • jhgkjhg_ugtdk77
  • jhgkjhg_ugtdk77
  • 2015年05月29日 19:21
  • 1033

POJ-3421-X-factor Chains

自己推的,其实就是分解因式,然后注意下剪枝。后台数据很大,最开始我开的数组记录,每次都初始化,但这样耗费的时间直接导致超时,后面去掉了就OK了~ 代码: #include #include #in...
  • z309241990
  • z309241990
  • 2014年04月03日 09:08
  • 983

POJ 3421 X-factor Chains 排列组合

#include #include #include #include #include #include #include #include #include #...
  • u012513980
  • u012513980
  • 2014年06月11日 16:49
  • 607

POJ 题目1306 Combinations(排列组合)

Combinations Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8701   A...
  • yu_ch_sh
  • yu_ch_sh
  • 2014年12月11日 17:52
  • 522

【POJ】3421 - X-factor Chains 素数

http://poj.org/problem?id=3421将一个数X分解成从1到X的数列,前一个数可以整除后一个数,求最大链长和链的个数。#include #include #include ...
  • zqf3535
  • zqf3535
  • 2017年08月30日 16:17
  • 100

POJ 3421 X-factor Chains 分解质因数 排列组合

题目链接: 点我 题目大意: 给出一个X,求一个1……X的最长递增数列,要求相邻两个可以整除,在求出有多少个这样的数列。比如给出6。1,2,6(这是最长)1,3,6(这是第二种). 题目解析: X...
  • happy_Du
  • happy_Du
  • 2017年07月09日 22:24
  • 102

X-factor Chains (poj 3421 数学排列组合)

题意:给出一个数X,现在定义1 = X0, X1, X2, …, Xm = X,其中Xi能被Xi-1整除,问满足该定义的最大m和满足最大的个数有多少。 思路:质因子们的排列组合——∏(质因子个数的阶乘...
  • u014422052
  • u014422052
  • 2015年03月25日 21:30
  • 634
    个人资料
    持之以恒
    等级:
    访问量: 5063
    积分: 2454
    排名: 1万+
    文章存档
    最新评论