HDU - 4979 A simple math problem. (Dancing Links 重复覆盖)

题意:

有一种彩票,共有n个数字,其中r个为获奖数字,每次买彩票选择m个不同数字,若m个数字中包含r个获奖数字则获奖。问至少要买多少彩票彩能保证获奖,也就是说至少买多少次才彩票就能包含完所有的C(n,r)种情况。其中n>=m>=r。举例:n=6,m=3,r=2。只用买6张彩票即可。{1,2,3},{1,4,5},{1,3,6},{2,4,6},{2,5,6},{3,4,5}。

分析:

很明显就能发现,这是一个很裸的DLX。

n个 选 r 个,共有 C[n][r] 种选法,每种选法需要被覆盖,对应于 DLX 中的列。

n个 选 m 个,共有 C[n][m] 种选法,每种选法对应于 DLX 中的行。

但要注意的是直接跑太慢。

打表出来就好了。

打表代码:

#include<bits/stdc++.h>

using namespace std;

const int maxn=1005;
const int maxm=1005;
const int maxnode=maxn*maxm;
const int inf=0x3f3f3f3f;

struct DLX{
    int n,m,size;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[maxn],S[maxm];
    int ansd,ans[maxn];
    void init(int _n,int _m){
        n=_n;
        m=_m;
        for(int i=0;i<=m;i++){
            S[i]=0;
            U[i]=D[i]=i;
            L[i]=i-1;
            R[i]=i+1;
        }
        R[m]=0;L[0]=m;
        size=m;
        for(int i=1;i<=n;i++){
            H[i]=-1;
        }
    }
    void Link(int r,int c){
        ++S[Col[++size]=c];
        Row[size]=r;
        D[size]=D[c];
        U[D[c]]=size;
        U[size]=c;
        D[c]=size;
        if(H[r]<0) H[r]=L[size]=R[size]=size;
        else{
            R[size]=R[H[r]];
            L[R[H[r]]]=size;
            L[size]=H[r];
            R[H[r]]=size;
        }
    }
    void remove(int c){
        for(int i=D[c];i!=c;i=D[i]){
            L[R[i]]=L[i];
            R[L[i]]=R[i];
        }
    }
    void resume(int c){
        for(int i=U[c];i!=c;i=U[i]){
            L[R[i]]=R[L[i]]=i;
        }
    }
    bool v[maxm];
    int f(){
        int ret=0;
        for(int c=R[0];c!=0;c=R[c]) v[c]=1;
        for(int c=R[0];c!=0;c=R[c]){
            if(v[c]){
                ret++;
                v[c]=false;
                for(int i=D[c];i!=c;i=D[i]){
                    for(int j=R[i];j!=i;j=R[j]){
                        v[Col[j]]=false;
                    }
                }
            }
        }
        return ret;
    }
    void dance(int d){
        if(d+f()>=ansd) return ;
        if(R[0]==0){
            if(d<ansd) ansd=d;
            return ;
        }
        int c=R[0];
        for(int i=R[0];i!=0;i=R[i]){
            if(S[i]<S[c]){
                c=i;
            }
        }
        for(int i=D[c];i!=c;i=D[i]){
            remove(i);
            for(int j=R[i];j!=i;j=R[j]) remove(j);
            dance(d+1);
            for(int j=L[i];j!=i;j=L[j]) resume(j);
            resume(i);
        }
    }
}dlx;

int bitcnt[(1<<8)+10];
int c[(1<<8)+10][(1<<8)+10];

int Bitcnt(int x){
    int cnt=0;
    while(x){
        if(x&1) cnt++;
        x>>=1;
    }
    return cnt;
}

void init(){
    for(int i=0;i<(1<<8);i++){
        bitcnt[i]=Bitcnt(i);
    }
    for(int i=1;i<=8;i++){
        c[i][0]=c[i][i]=1;
        for(int j=1;j<i;j++){
            c[i][j]=c[i-1][j-1]+c[i-1][j];
        }
    }
}

int col[(1<<8)+10];

void solve(int n,int m,int r){
    int ccnt=0;
    for(int i=1;i<(1<<n);i++){
        if(bitcnt[i]==r){
            col[i]=++ccnt;
        }
    }
    int rcnt=0;
    dlx.init(c[n][m],c[n][r]);
    for(int i=1;i<(1<<n);i++){
        if(bitcnt[i]==m){
            rcnt++;
            for(int j=i;j>0;j=(i&(j-1))){
                if(bitcnt[j]==r){
                    dlx.Link(rcnt,col[j]);
                }
            }
        }
    }
    dlx.ansd=inf;
    dlx.dance(0);
    printf("%d",dlx.ansd);
}

int main(){
    init();
    printf("{\n");
    for(int n=1;n<=8;n++){
        printf(" {\n");
        for(int m=1;m<=n;m++){
            printf("  {");
            for(int r=1;r<=m;r++){
                if(r>1) printf(",");
                solve(n,m,r);
            }
            printf("}");
            if(m==n) printf("\n");
            else printf(",");
        }
        printf(" }");
        if(n==8) printf("\n");
        else printf(",\n");
    }
    printf("}\n");
    return 0;
}





AC代码:

#include<bits/stdc++.h>

using namespace std;

int ans[10][10][10]=
{
 {
  {1}
 },
 {
  {2},  {1,1}
 },
 {
  {3},  {2,3},  {1,1,1}
 },
 {
  {4},  {2,6},  {2,3,4},  {1,1,1,1}
 },
 {
  {5},  {3,10},  {2,4,10},  {2,3,4,5},  {1,1,1,1,1}
 },
 {
  {6},  {3,15},  {2,6,20},  {2,3,6,15},  {2,3,4,5,6},  {1,1,1,1,1,1}
 },
 {
  {7},  {4,21},  {3,7,35},  {2,5,12,35},  {2,3,5,9,21},  {2,3,4,5,6,7},  {1,1,1,1,1,1,1}
 },
 {
  {8},  {4,28},  {3,11,56},  {2,6,14,70},  {2,4,8,20,56},  {2,3,4,7,12,28},  {2,3,4,5,6,7,8},  {1,1,1,1,1,1,1,1}
 }
};

int main(){
    int T;
    scanf("%d",&T);
    for(int cs=1;cs<=T;cs++){
        int n,m,r;
        scanf("%d%d%d",&n,&m,&r);
        printf("Case #%d: %d\n",cs,ans[n-1][m-1][r-1]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值