概率与期望

本文主要介绍了概率论中的基础概念,包括随机变量、事件概率的计算,以及期望(E(X))的定义和计算方法。通过实例解析了独立事件的性质、期望的线性性和常用公式,并探讨了在不同场景下如拿球问题、游走问题等期望值的计算。此外,还讨论了在随机游走中达到特定状态的期望步数,以及在各种随机过程中的概率问题,如排列概率、子序列出现概率等。
摘要由CSDN通过智能技术生成

Friendly reminder:
Careful eating


PS:本篇文章为正睿OI.B班.Day1.PPT的例题整理与解析

基础概念

  • 随机变量:有多种可能的取值变量
  • P ( A ) P(A) P(A) 事件发生的概率 P ( 硬 币 朝 上 ) = 0.5 P(硬币朝上)=0.5 P()=0.5
  • E ( X ) E(X) E(X) 期望:
    E ( X ) = ∑ X 的 所 有 取 值 i P ( X = i ) ∗ i E ( 掷 骰 子 朝 上 面 值 ) = ∑ i = 1 6 E ( X ) = 1 6 ∗ i = 3.5 E(X)=\sum_{X的所有取值i}P(X=i)*i\\ E(掷骰子朝上面值)=\sum_{i=1}^{6}E(X)=\frac{1}{6}*i\\ =3.5\\ E(X)=XiP(X=i)iE()=i=16E(X)=61i=3.5
  • 独立事件:互不影响的时间, P ( A B ) = P ( A ) ∗ P ( B ) P(AB)=P(A)*P(B) P(AB)=P(A)P(B)
  • 独立事件, E ( A B ) = E ( A ) ∗ E ( B ) E(AB)=E(A)*E(B) E(AB)=E(A)E(B)
    E ( A B ) = ∑ i ∑ j P ( A = i 且 B = j ) ∗ i ∗ j = ∑ i ∑ j P ( A = i ) ∗ P ( B = j ) ∗ i ∗ j = ( ∑ i P ( A = i ) ∗ i ) ∗ ( ∑ j P ( B = j ) ∗ j ) = E ( A ) ∗ E ( B ) E(AB)=\sum_{i}\sum_{j}P(A=i且B=j)*i*j\\ =\sum_{i}\sum_{j}P(A=i)*P(B=j)*i*j\\ =(\sum_{i}P(A=i)*i)*(\sum_{j}P(B=j)*j)\\ =E(A)*E(B)\\ E(AB)=ijP(A=iB=j)ij=ijP(A=i)P(B=j)ij=(iP(A=i)i)(jP(B=j)j)=E(A)E(B)
  • T i p : P ( X Y = K ) = ∑ i P ( X = i 且 Y = K i ) Tip:P(XY=K)=\sum_iP(X=i且Y=\frac{K}{i}) Tip:P(XY=K)=iP(X=iY=iK)

常用公式

  • 当 0 < x < 1 时,我们有: ∑ i = 0 ∞ x i = 1 1 − x \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} i=0xi=1x1

  • ∑ i = 0 n x i = 1 − x n + 1 1 − x \sum_{i=0}^{n}x^i=\frac{1-x^{n+1}}{1-x} i=0nxi=1x1xn+1
    ∑ i = 0 n x i = 1 − x n + 1 1 − x 证 明 : ( 1 − x ) ∗ ∑ i = 0 n x i = ∑ i = 0 n x i − ∑ i = 1 n + 1 x i = 1 − x n + 1 ∴ ∑ i = 0 n x i = 1 − x n + 1 1 − x 由 此 可 证 ∑ i = 0 ∞ x i = 1 1 − x : ∵ x ∞ = 0 ∴ 当 0 &lt; x &lt; 1 时 , ∑ i = 0 ∞ x i = 1 1 − x \sum_{i=0}^{n}x^i=\frac{1-x^{n+1}}{1-x}\\ 证明:(1-x)*\sum_{i=0}^{n}x^i=\sum_{i=0}^{n}x^i-\sum_{i=1}^{n+1}x^i\\ =1-x^{n+1}\\ ∴\sum_{i=0}^{n}x^i=\frac{1-x^{n+1}}{1-x}\\ 由此可证\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}:\\ ∵x^{\infty}=0\\ ∴当0&lt;x&lt;1时,\sum_{i=0}^{\infty}x^i=\frac{1}{1-x} i=0nxi=1x1xn+1:(1x)i=0nxi=i=0nxii=1n+1xi=1xn+1i=0nxi=1x1xn+1i=0xi=1x1x=00<x<1i=0xi=1x1

  • 期望的线性性:对于任意两个随机变量 X 、 Y X、Y XY E [ X + Y ] = E [ X ] + E [ Y ] E[X+Y]=E[X]+E[Y] E[X+Y]=E[X]+E[Y](对于离散随机变量)
    E [ X + Y ] = ∑ i ∑ j P ( X = i 且 Y = j ) ∗ ( i + j ) = ∑ i ∑ j P ( X = i 且 Y = j ) ∗ i + ∑ j ∑ i P ( X = i 且 Y = j ) ∗ j = ∑ i i ∑ j P ( X = i 且 Y = j ) + ∑ j j ∑ i P ( X = i 且 Y = j ) = ∑ i i ∗ P ( i ) + ∑ j j ∗ P ( j ) = E [ X ] + E [ Y ] E[X+Y]=\sum_{i}\sum_{j}P(X=i且Y=j)*(i+j)\\ =\sum_{i}\sum_{j}P(X=i且Y=j)*i+\sum_{j}\sum_{i}P(X=i且Y=j)*j\\ =\sum_{i}i\sum_{j}P(X=i且Y=j)+\sum_{j}j\sum_{i}P(X=i且Y=j)\\ =\sum_{i}i*P(i)+\sum_{j}j*P(j)\\ =E[X]+E[Y]\\ E[X+Y]=ijP(X=iY=j)(i+j)=ijP(X=iY=j)i+jiP(X=iY=j)j=iijP(X=iY=j)+jjiP(X=iY=j)=iiP(i)+jjP(j)=E[X]+E[Y]

  • T i p : P ( X + Y = K ) = ∑ i P ( X = i 且 Y = K − i ) Tip:P(X+Y=K)=\sum_{i}P(X=i且Y=K-i) Tip:P(X+Y=K)=iP(X=iY=Ki)

常⽤技巧-前缀和技

  • 对于离散变量 X X X P ( X = K ) = P ( X ≤ K ) − P ( X ≤ K − 1 ) P(X=K)=P(X\leq K)-P(X\leq K-1) P(X=K)=P(XK)P(XK1)
  • n n n 个随机变量 X [ 1 … n ] X[1…n] X[1n],每个随机变量都是从 1 … S 1…S 1S 中随机⼀个整数,求 M a x ( X [ 1 … n ] ) Max(X[1…n]) Max(X[1n]) 的期望
    选 择 n 个 小 于 i 的 数 的 概 率 为 : P ( X ≤ i ) = ( i S ) n 选 择 最 大 值 等 于 i 的 数 的 概 率 为 : P ( X = i ) = P ( X ≤ i ) − P ( X ≤ i − 1 ) = ( i S ) n − ( i − 1 S ) n 最 大 值 的 期 望 : E ( Y ) = ∑ i ( ( i S ) n − ( i − 1 S ) n ) ∗ i 选择n个小于i的数的概率为:P(X\leq i)=(\frac{i}{S})^n\\ 选择最大值等于i的数的概率为:P(X=i)=P(X\leq i)-P(X\leq i-1)=(\frac{i}{S})^n-(\frac{i-1}{S})^n\\ 最大值的期望:E(Y)=\sum_{i}((\frac{i}{S})^n-(\frac{i-1}{S})^n)*i ni:P(Xi)=(Si)ni:P(X=i)=P(Xi)P(Xi1)=(Si)n(Si1)n:E(Y)=i((Si)n(Si1)n)i
  • 概率为 p p p 的事件期望 1 p \frac{1}{p} p1 次后发⽣
    X : 几 次 才 发 生 该 事 件 E ( X ) = ∑ i ∞ P ( X = i ) ∗ i = ∑ i = 1 ∞ ( P ( X ≥ i ) − P ( X ≥ i + 1 ) ) ∗ i = ∑ i = 1 ∞ ( ( 1 − p ) i − 1 − ( 1 − p ) i ) ∗ i = ( ( 1 − p ) 0 − ( 1 − p ) 1 ) ∗ 1 + ( ( 1 − p ) 1 − ( 1 − p ) 2 ) ∗ 2 + . . . = ∑ i = 0 ∞ ( 1 − p ) i = 1 1 − ( 1 − p ) = 1 p X:几次才发生该事件\\ E(X)=\sum_{i}^{\infty}P(X=i)*i\\ =\sum_{i=1}^{\infty}(P(X\geq i)-P(X\geq i+1))*i\\ =\sum_{i=1}^{\infty}((1-p)^{i-1}-(1-p)^{i})*i\\ =((1-p)^0-(1-p)^1)*1+((1-p)^1-(1-p)^2)*2+...\\ =\sum_{i=0}^{\infty}(1-p)^i\\ =\frac{1}{1-(1-p)}\\ =\frac{1}{p} X:E(X)=iP(X=i)i=i=1(P(Xi)P(Xi+1))i=i=1((1p)i1(1p)i)i=((1p)0(1p)1)1+((1p)1(1p)2)2+...=i=0(1p)i=1(1p)1=p1
  • T i p : E [ X ] = ∑ i = 1 ∞ P ( X ≥ i ) Tip:E[X]=\sum_{i=1}^{\infty}P(X\geq i) TipE[X]=i=1P(Xi)
    E [ x ] = ∑ i = 1 ∞ P ( X = i ) ∗ i = ∑ i = 1 ∞ P ( X = i ) ∑ j = 1 j ≤ i 1 = ∑ j = 1 ∞ 1 ∑ i ≥ j P ( X = i ) = ∑ i = 1 ∞ P ( X ≥ i ) E[x]=\sum_{i=1}^{\infty}P(X=i)*i\\ =\sum_{i=1}^{\infty}P(X=i)\sum_{j=1}^{j\leq i}1\\ =\sum_{j=1}^{\infty}1\sum_{i\geq j}P(X=i)\\ =\sum_{i=1}^{\infty}P(X\geq i) E[x]=i=1P(X=i)i=i=1P(X=i)j=1ji1=j=11ijP(X=i)=i=1P(Xi)

拿球问题

  • 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后放回,求取出的数字之和的期望
    X i : 代 表 第 i 次 拿 出 来 的 值 则 取 出 的 数 字 之 和 的 期 望 为 : E [ ∑ i = 1 m X i ] = ∑ i = 1 m E [ X i ] 每 次 取 出 的 球 的 期 望 相 等 : E [ X 1 ] = E [ X 2 ] = . . . = E [ X m ] = ∑ i = 1 n 1 n ∗ i = ( 1 + n ) ∗ n 2 n = 1 + n 2 ∴ ∑ i = 1 m E [ X i ] = m ∗ 1 + n 2 X_i:代表第i次拿出来的值\\ 则取出的数字之和的期望为:E[\sum_{i=1}^{m}X_i]=\sum_{i=1}^{m}E[X_i]\\ 每次取出的球的期望相等:E[X_1]=E[X_2]=...=E[X_m]=\sum_{i=1}^{n}\frac{1}{n}*i=\frac{(1+n)*n}{2n}=\frac{1+n}{2}\\ ∴\sum_{i=1}^{m}E[X_i]=m*\frac{1+n}{2} XiiE[i=1mXi]=i=1mE[Xi]E[X1]=E[X2]=...=E[Xm]=i=1nn1i=2n(1+n)n=21+ni=1mE[Xi]=m21+n
  • 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后不放回,求取出的数字之和的期望
    X i = { i ( 选 ) 0 ( 不 选 ) P ( X i ) 表 示 i 标 号 的 球 被 选 的 概 率 E [ S ] = E [ ∑ i = 1 n X i ] = ∑ i = 1 n E [ X i ] = P ( X i = i ) ∗ i + ( 1 − P ( X i = i ) ) ∗ 0 = ∑ i = 1 n C ( m − 1 , n − 1 ) C ( m , n ) ∗ i = ∑ i = 1 n m n ∗ i = m n ∑ i = 1 n i = m ∗ 1 + n 2 X_i=\begin{cases} i(选)\\ 0(不选) \end{cases}\\ P(X_i)表示i标号的球被选的概率\\ E[S]=E[\sum_{i=1}^{n}X_i]=\sum_{i=1}^{n}E[X_i]\\=P(X_i=i)*i+(1-P(X_i=i))*0\\ =\sum_{i=1}^{n}\frac{C(m-1,n-1)}{C(m,n)}*i\\ =\sum_{i=1}^{n}\frac{m}{n}*i=\frac{m}{n}\sum_{i=1}^{n}i=m*\frac{1+n}{2} Xi={i()0()P(Xi)iE[S]=E[i=1nXi]=i=1nE[Xi]=P(Xi=i)i+(1P(Xi=i))0=i=1nC(m,n)C(m1,n1)i=i=1nnmi=nmi=1ni=m21+n
  • 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后以p1 的概率放回,以 p2 的概率放回两个和这个相同的球,求取出的数字之和的期望
    放 回 两 个 球 的 价 值 与 原 来 的 球 相 等 , p 2 没 有 用 处 Y i 代 表 价 值 为 i 被 选 了 几 次 X i = Y i ∗ i E [ S ] = E [ ∑ i = 1 n X i ] = ∑ i = 1 n E [ X i ] = ∑ i = 1 n E [ Y i ∗ i ] = ∑ i = 1 n E [ Y i ] ∗ i T = ∑ i = 1 n Y i = m E [ T ] = E [ ∑ i = 1 n Y i ] = ∑ i = 1 n E [ Y i ] = 1 ∗ m ∵ 每 个 球 是 平 等 的 ∴ E [ Y 1 ] = E [ Y 2 ] = . . . = E [ Y n ] = m n ∴ E [ S ] = ∑ i = 1 n E [ Y i ] ∗ i = ∑ i = 1 n m n ∗ i = m ∗ n + 1 2 放回两个球的价值与原来的球相等,p2没有用处\\ Y_i代表价值为i被选了几次\\ X_i=Y_i*i\\ E[S]=E[\sum_{i=1}^{n}X_i]=\sum_{i=1}^{n}E[X_i]\\ =\sum_{i=1}^{n}E[Y_i*i]=\sum_{i=1}^{n}E[Y_i]*i\\ T=\sum_{i=1}^{n}Y_i=m\\ E[T]=E[\sum_{i=1}^{n}Y_i]=\sum_{i=1}^{n}E[Y_i]=1*m\\ ∵每个球是平等的\\ ∴E[Y_1]=E[Y_2]=...=E[Y_n]=\frac{m}{n}\\ ∴E[S]=\sum_{i=1}^{n}E[Y_i]*i\\ =\sum_{i=1}^{n}\frac{m}{n}*i\\ =m*\frac{n+1}{2} p2YiiXi=YiiE[S]=E[i=1nXi]=i=1nE[Xi]=i=1nE[Yii]=i=1nE[Yi]iT=i=1nYi=mE[T]=E[i=1nYi]=i=1nE[Yi]=1mE[Y1]=E[Y2]=...=E[Yn]=nmE[S]=i=1nE[Yi]i=i=1nnmi=m2n+1

游⾛问题

  • 在⼀条 n 个点的链上游⾛,求从⼀端⾛到另⼀端的期望步数
    X i 代 表 从 i 出 发 随 机 游 走 第 一 次 到 i + 1 的 步 数 Y = ∑ i = 1 n − 1 X i E [ Y ] = E [ ∑ i = 1 n − 1 X i ] = ∑ i = 1 n − 1 E [ X i ] E [ X 1 ] = 1 E [ X 2 ] = { 1 2 ∗ 1 1 2 ∗ ( 1 + E [ X 1 ] + E [ X 2 ] ) ∴ E [ X 2 ] = 1 2 + 1 2 ( 1 + E [ X 1 ] + E [ X 2 ] ) = 1 + 1 2 ( E [ X 1 ] + E [ X 2 ] ) = 2 + E [ X 1 ] = 3 ∴ E [ X i ] = { 1 2 ∗ 1 1 2 ∗ ( 1 + E [ X i − 1 ] + E [ X 2 ] ) ∵ E [ X i ] = 2 + E [ X i − 1 ] ∴ E [ Y ] = ∑ i = 1 n − 1 E [ X i ] = ( n − 1 ) 2 X_i代表从i出发随机游走第一次到i+1的步数\\ Y=\sum_{i=1}^{n-1}X_i\\ E[Y]=E[\sum_{i=1}^{n-1}X_i]\\ =\sum_{i=1}^{n-1}E[X_i]\\ E[X_1]=1 \\ E[X_2]=\begin{cases}\frac{1}{2}*1\\\frac{1}{2}*(1+E[X_1]+E[X_2])\end{cases}\\ ∴E[X_2]=\frac{1}{2}+\frac{1}{2}(1+E[X_1]+E[X_2])\\ =1+\frac{1}{2}(E[X_1]+E[X_2])\\ =2+E[X_1]=3\\ ∴E[X_i]=\begin{cases}\frac{1}{2}*1\\\frac{1}{2}*(1+E[X_{i-1}]+E[X_2])\end{cases}\\ ∵E[X_i]=2+E[X_i-1]\\ ∴E[Y]=\sum_{i=1}^{n-1}E[X_i]=(n-1)^2 Xiii+1Y=i=1n1XiE[Y]=E[i=1n1Xi]=i=1n1E[Xi]E[X1]=1E[X2]={21121(1+E[X1]+E[X2])E[X2]=21+21(1+E[X1]+E[X2])=1+21(E[X1]+E[X2])=2+E[X1]=3E[Xi]={21121(1+E[Xi1]+E[X2])E[Xi]=2+E[Xi1]E[Y]=i=1n1E[Xi]=(n1)2
  • 在⼀张 n 个点的完全图上游⾛,求从⼀个点⾛到另⼀个点的期望步数
    ∵ 完 全 图 ∴ 每 次 有 1 n − 1 的 概 率 成 功 ∴ 由 “ 概 率 为 p 的 事 件 期 望 1 p 次 后 发 ⽣ &quot; 得 期 望 步 数 为 n − 1 ∵完全图\\ ∴每次有\frac{1}{n-1}的概率成功\\ ∴由“概率为 p 的事件期望 \frac{1}{p} 次后发⽣&quot;得期望步数为n-1 n11pp1"n1
  • 在⼀张 2n 个点的完全⼆分图上游⾛,求从⼀个点⾛到另⼀个点的期望步数
    完 全 二 分 图 : 两 个 集 合 各 有 n 个 点 , 两 个 集 合 之 间 的 点 两 两 间 都 有 连 边 A : 从 一 个 点 走 到 同 侧 点 的 期 望 步 数 B : 从 一 个 点 走 到 另 一 侧 点 的 期 望 步 数 B = 1 n ∗ 1 + n − 1 n ∗ ( B + 2 ) 1 n B = 1 n + 2 n − 2 n B = 2 n − 1 A = B + 1 = 2 n 完全二分图:两个集合各有n个点,两个集合之间的点两两间都有连边\\ A:从一个点走到同侧点的期望步数\\ B:从一个点走到另一侧点的期望步数\\ B=\frac{1}{n}*1+\frac{n-1}{n}*(B+2)\\ \frac{1}{n}B=\frac{1}{n}+{2n-2}{n}\\ B=2n-1\\ A=B+1=2n nA:B:B=n11+nn1(B+2)n1B=n1+2n2nB=2n1A=B+1=2n
  • 在⼀张 n 个点的菊花图上游⾛,求从⼀个点⾛到另⼀个点的期望步数
    设 x 为 根 1 叶 子 − 叶 子 : A 2 叶 子 − 中 心 : 1 3. 中 心 − 叶 子 : B A = B + 1 B = 1 n + n − 2 n − 1 ( 1 + A ) B = 1 n + n − 2 n − 1 ∗ 2 + n − 2 n − 1 B 1 n − 1 B = 1 n + n − 2 n − 1 ∗ 2 B = n − 1 n + 2 ∗ n − 4 A = n − 1 n + 2 ∗ n − 3 设x为根\\ 1 叶子-叶子:A\\ 2 叶子-中心:1\\ 3.中心-叶子:B\\ A=B+1\\ B=\frac{1}{n}+\frac{n-2}{n-1}(1+A)\\ B=\frac{1}{n}+\frac{n-2}{n-1}*2+\frac{n-2}{n-1}B\\ \frac{1}{n-1}B=\frac{1}{n}+\frac{n-2}{n-1}*2\\ B=\frac{n-1}{n}+2*n-4\\ A=\frac{n-1}{n}+2*n-3 x1:A2:13.:BA=B+1B=n1+n1n2(1+A)B=n1+n1n22+n1n2Bn11B=n1+n1n22B=nn1+2n4A=nn1+2n3
  • 在⼀棵 n 个点的树上游⾛,求从根⾛到 x 的期望步数
    f [ x ] 表 示 从 x 出 发 第 一 次 走 到 f a [ x ] 的 期 望 步 数 d [ x ] 为 x 的 度 数 f [ x ] = { 1 d [ x ] ∗ 1 1 d [ x ] ∑ y ∈ s o n ( x ) ( 1 + f [ y ] + f [ x ] ) f [ x ] = 1 d [ x ] ∗ 1 + 1 d [ x ] ∑ y ∈ s o n ( x ) ( 1 + f [ y ] + f [ x ] ) 1 d [ x ] f [ x ] = 1 + 1 d [ x ] ∑ y ∈ s o n ( x ) f [ y ] f [ x ] = d [ x ] + ∑ y ∈ s o n ( x ) f [ y ] f[x]表示从x出发第一次走到fa[x]的期望步数\\ d[x]为x的度数\\ f[x]=\begin{cases}\frac{1}{d[x]}*1\\\frac{1}{d[x]}\sum_{y\in son(x)}(1+f[y]+f[x])\end{cases}\\ f[x]=\frac{1}{d[x]}*1+\frac{1}{d[x]}\sum_{y\in son(x)}(1+f[y]+f[x])\\ \frac{1}{d[x]}f[x]=1+\frac{1}{d[x]}\sum_{y\in son(x)}f[y]\\ f[x]=d[x]+\sum_{y\in son(x)}f[y] f[x]xfa[x]d[x]xf[x]={d[x]11d[x]1yson(x)(1+f[y]+f[x])f[x]=d[x]11+d[x]1yson(x)(1+f[y]+f[x])d[x]1f[x]=1+d[x]1yson(x)f[y]f[x]=d[x]+yson(x)f[y]
  • 构造⼀张200个点的⽆向图,使得上⾯从 S ⾛到 T 的随机游⾛期望步数>=1000000
    构 造 一 条 长 100 的 链 已 知 一 条 链 的 期 望 步 数 在 n 2 级 别 , 只 要 在 链 头 构 造 一 张 完 全 图 设 链 与 完 全 图 链 接 的 节 点 为 1 , 该 点 的 度 数 为 n , E [ 1 ] 为 走 到 链 上 下 一 个 点 的 期 望 E [ 1 ] = 1 n ∗ 1 + n − 1 n ( 1 + ( n − 1 ) + E [ 1 ] ) 为 n 2 级 别 ( 其 中 n − 1 为 回 来 的 期 望 ) 所 以 随 机 游 走 步 数 &gt; = 1000000 构造一条长100的链\\ 已知一条链的期望步数在n^2级别,只要在链头构造一张完全图\\ 设链与完全图链接的节点为1,该点的度数为n,E[1]为走到链上下一个点的期望\\ E[1]=\frac{1}{n}*1+\frac{n-1}{n}(1+(n-1)+E[1])为n^2级别(其中n-1为回来的期望)\\ 所以随机游走步数&gt;=1000000 100n21nE[1]E[1]=n11+nn1(1+(n1)+E[1]n2n1>=1000000

经典问题

  • 每次随机⼀个 [1,n] 的整数,问期望⼏次能凑⻬所有数
    X i 表 示 当 前 有 i − 1 个 数 , 直 到 有 i 个 数 E [ S ] = E [ ∑ i = 1 n X i ] = ∑ i = 1 n E [ X i ] 成 功 的 概 率 为 n − ( i − 1 ) n , 所 以 E [ X i ] = n n − i + 1 E [ S ] = ∑ i = 1 n E [ X i ] = ∑ i = 1 n n n − i + 1 = ∑ i = 1 n n i X_i表示当前有i-1个数,直到有i个数\\ E[S]=E[\sum_{i=1}^{n}X_i]=\sum_{i=1}^{n}E[X_i]\\ 成功的概率为\frac{n-(i-1)}{n},所以E[X_i]=\frac{n}{n-i+1}\\ E[S]=\sum_{i=1}^nE[X_i]=\sum_{i=1}^n\frac{n}{n-i+1}=\sum_{i=1}^{n}\frac{n}{i} Xii1iE[S]=E[i=1nXi]=i=1nE[Xi]nn(i1),E[Xi]=ni+1nE[S]=i=1nE[Xi]=i=1nni+1n=i=1nin
  • 随机⼀个⻓度为 n 个排列 p,求 p[1…i] 中 p[i] 是最⼤的数的概率
    前 i 个 数 每 一 个 数 都 有 可 能 是 最 大 数 , 所 以 答 案 为 1 i 前i个数每一个数都有可能是最大数,所以答案为\frac{1}{i} ii1
  • 问满⾜上⾯那个题的 i 的个数的平⽅的期望
    X i = { 1 , P i = m a x { P 1 . . . P i } 0 , P i = ̸ m a x { P 1 . . . P i } X = ∑ i = 1 n X i E [ X 2 ] = E [ ∑ i = 1 n X i ] = E [ s u m i = ̸ j X i X j + ∑ i = 1 n X i 2 ] = ∑ i = ̸ j E [ X i ∗ X j ] + ∑ i = 1 n E [ X i ] 可 以 发 现 P [ i ] 为 最 大 和 P [ j ] 为 最 大 互 不 影 响 且 , 所 以 E [ X i ∗ X j ] = E [ X i ] ∗ E [ X j ] = 1 i j ∗ 1 + 1 i ∗ ( 1 − 1 j ) ∗ 0 + 1 j ∗ ( 1 − 1 i ) ∗ 0 + ( 1 − 1 i ) ∗ ( 1 − 1 j ) ∗ 0 ∴ E [ X 2 ] = ∑ i = ̸ j 1 i j + ∑ i = 1 n 1 i X_i=\begin{cases}1,P_i=max\lbrace P_1...P_i\rbrace\\0,P_i =\not max\lbrace P_1...P_i\rbrace\end{cases}\\ X=\sum_{i=1}^{n}X_i\\ E[X^2]=E[\sum_{i=1}^{n}X_i]=E[sum_{i=\not j}X_iX_j+\sum_{i=1}^{n}X_i^2]\\ =\sum_{i= \not j}E[X_i*X_j]+\sum_{i=1}^{n}E[X_i]\\ 可以发现P[i]为最大和P[j]为最大互不影响且,所以E[X_i*X_j]=E[X_i]*E[X_j]\\ =\frac{1}{ij}*1+\frac{1}{i}*(1-\frac{1}{j})*0+\frac{1}{j}*(1-\frac{1}{i})*0+(1-\frac{1}{i})*(1-\frac{1}{j})*0\\ ∴E[X^2]=\sum_{i= \not j}\frac{1}{ij}+\sum_{i=1}^{n}\frac{1}{i}\\ Xi={1,Pi=max{P1...Pi}0,Pi≠max{P1...Pi}X=i=1nXiE[X2]=E[i=1nXi]=E[sumi≠jXiXj+i=1nXi2]=i≠jE[XiXj]+i=1nE[Xi]P[i]P[j]E[XiXj]=E[Xi]E[Xj]=ij11+i1(1j1)0+j1(1i1)0+(1i1)(1j1)0E[X2]=i≠jij1+i=1ni1
  • 随机⼀个⻓度为 n 的排列 p,求 i 在 j 的后⾯的概率
    一 半 i 在 j 前 , 一 般 i 在 j 后 , 所 以 概 率 为 : 1 2 一半i在j前,一般i在j后,所以概率为:\frac{1}{2} ijij:21
  • 随机⼀个⻓度为 n 的排列 p,求它包含 w[1…m] 作为⼦序列/连续⼦序列的概率
    子 序 列 : m 个 数 排 列 只 有 一 种 情 况 满 足 条 件 , 概 率 为 1 m ! 连 续 子 序 列 : w 的 可 能 性 共 有 C ( m , n ) ∗ m ! 种 X i = { 1 , 第 i 种 方 法 满 足 要 求 0 , 第 i 中 方 法 不 满 足 要 求 Y = ∑ i = 1 C ( m , n ) ∗ m ! X i = n − m + 1 E [ Y ] = E [ ∑ i = 1 C ( m , n ) ∗ m ! X i ] = ∑ i = 1 C ( m , n ) ∗ m ! E [ X i ] = n − m + 1 ∵ 每 种 情 况 平 等 ∴ E [ X i ] = n − m + 1 C ( m , n ) ∗ m ! 权 值 只 有 0 / 1 , 转 换 概 率 P 相 等 , 答 案 为 n − m + 1 C ( m , n ) ∗ m ! 子序列:m个数排列只有一种情况满足条件,概率为\frac{1}{m!}\\ 连续子序列: w的可能性共有C(m,n)*m!种\\ X_i=\begin{cases}1,第i种方法满足要求\\0,第i中方法不满足要求\end{cases}\\ Y=\sum_{i=1}^{C(m,n)*m!}X_i=n-m+1\\ E[Y]=E[\sum_{i=1}^{C(m,n)*m!}X_i]=\sum_{i=1}^{C(m,n)*m!}E[X_i]=n-m+1\\ ∵每种情况平等\\ ∴E[X_i]=\frac{n-m+1}{C(m,n)*m!}\\ 权值只有0/1,转换概率P相等,答案为\frac{n-m+1}{C(m,n)*m!} :mm!1:wC(m,n)m!Xi={1,i0,iY=i=1C(m,n)m!Xi=nm+1E[Y]=E[i=1C(m,n)m!Xi]=i=1C(m,n)m!E[Xi]=nm+1E[Xi]=C(m,n)m!nm+10/1,P,C(m,n)m!nm+1
  • 有 n 堆⽯头,第 i 堆个数为 a[i],每次随机选⼀个⽯头然后把那⼀整堆都扔了,求第 1 堆石头期望第⼏次被扔
    设 A i 表 示 第 i 堆 石 子 被 取 走 的 时 间 , 求 E [ A 1 ] A 1 = ∑ i = 2 n [ A i &lt; A 1 ] + 1 ∴ E [ A 1 ] = ∑ i = 2 n E [ A i &lt; A 1 ] + 1 E ( A i &lt; A 1 ) = P ( A i &lt; A 1 ) = a i a 1 + a i ∴ E [ A 1 ] = 1 + ∑ i = 2 n a i a 1 + a i 设A_i表示第i堆石子被取走的时间,求E[A_1] A_1=\sum_{i=2}{n}[A_i&lt;A_1]+1\\ ∴E[A_1]=\sum_{i=2}^{n}E[A_i&lt;A_1]+1\\ E(A_i&lt;A_1)=P(A_i&lt;A_1)=\frac{a_i}{a_1+a_i}\\ ∴E[A_1]=1+\sum_{i=2}^{n}\frac{a_i}{a_1+a_i} AiiE[A1]A1=i=2n[Ai<A1]+1E[A1]=i=2nE[Ai<A1]+1E(Ai<A1)=P(Ai<A1)=a1+aiaiE[A1]=1+i=2na1+aiai
  • 随机⼀个⻓度为 n 的01串,每个位置是 1 的概率是 p ,定义 X 是每段连续的 1 的⻓度的平⽅之和,求E[X]
    X i 代 表 1   i 的 全 1 段 的 长 度 和 Y i 代 表 以 i 结 尾 的 段 末 尾 有 几 个 连 续 的 1 若 a i + 1 = 0 , 则 Y i + 1 = 0 , X i + 1 = X i 若 a i + 1 = 1 , 则 Y i + 1 = Y i + 1 , X i + 1 = X i − Y i 2 + ( Y i + 1 ) 2 = X i + 2 Y i + 1 ∴ E [ X n ] = p ∗ ( E [ X n − 1 ) + 2 E [ Y n − 1 ] + 1 ) + ( 1 − p ) ∗ E [ X n − 1 ] E [ Y n ] = p ∗ ( E [ y n − 1 ] + 1 ) + ( 1 − p ) ∗ 0 X_i代表1~i的全1段的长度和\\ Y_i代表以i结尾的段末尾有几个连续的1\\ 若a_{i+1}=0,则Y_{i+1}=0,X_{i+1}=X_i\\ 若a_{i+1}=1,则Y_{i+1}=Y_i+1,X_{i+1}=X_i-Y_i^2+(Y_i+1)^2=X_i+2Y_i+1\\ ∴E[X_n]=p*(E[X_{n-1})+2E[Y_{n-1}]+1)+(1-p)*E[X_{n-1}]\\ E[Y_n]=p*(E[y_{n-1}]+1)+(1-p)*0 Xi1 i1Yii1ai+1=0,Yi+1=0,Xi+1=Xiai+1=1,Yi+1=Yi+1,Xi+1=XiYi2+(Yi+1)2=Xi+2Yi+1E[Xn]=p(E[Xn1)+2E[Yn1]+1)+(1pE[Xn1]E[Yn]=p(E[yn1]+1)+(1p)0
  • 给⼀个序列,每次随机删除⼀个元素,问 i 和 j 在过程中相邻的概率
    i , j 相 邻 当 且 仅 当 ( i , j ) 中 所 有 数 载 i , j 之 间 删 除 1 组 合 : ( j − i − 1 ) ! 2 ( j − i + 1 ) ! = 2 ( j − i + 1 ) ( j − i ) 2 概 率 : 1 j − i + 1 ∗ 1 j − i ∗ 2 = 2 ( j − i + 1 ) ( j − i ) i,j相邻当且仅当(i,j)中所有数载i,j之间删除\\ 1组合:\frac{(j-i-1)!2}{(j-i+1)!}=\frac{2}{(j-i+1)(j-i)}\\ 2概率:\frac{1}{j-i+1}*\frac{1}{j-i}*2=\frac{2}{(j-i+1)(j-i)} i,j(i,j)i,j1:(ji+1)!(ji1)!2=(ji+1)(ji)22:ji+11ji12=(ji+1)(ji)2
  • 给定⼀棵树,将他的边随机⼀个顺序后依次插⼊,求 u,v 期望什么时候连通
    u − v 之 间 一 共 有 k 条 边 , 将 边 集 按 照 插 入 顺 序 排 列 , 枚 举 u , v 之 间 最 后 一 条 边 加 入 的 位 置 a n s = ∑ i = k n − 1 k ! ∗ C ( k − 1 , i − 1 ) ∗ ( n − 1 − k ) ! ( n − 1 ) ! ∗ i 其 中 k ! ∗ C ( k − 1 , i − 1 ) 为 k 条 边 的 摆 放 情 况 , ( n − 1 − k ) ! 为 其 它 边 的 摆 放 情 况 u-v之间一共有k条边,将边集按照插入顺序排列,枚举u,v之间最后一条边加入的位置\\ ans=\sum_{i=k}^{n-1}\frac{k!*C(k-1,i-1)*(n-1-k)!}{(n-1)!}*i\\ 其中k!*C(k-1,i-1)为k条边的摆放情况,(n-1-k)!为其它边的摆放情况 uvk,,u,vans=i=kn1(n1)!k!C(k1,i1)(n1k)!ik!C(k1,i1)k,(n1k)!
  • 给 1…n 这 n 个数,每次随机选择⼀个还在的数并且删掉他的所有约数,求期望⼏次删完
    删 除 约 数 = 死 缓 ( 标 记 ) X i = { 1 , 标 记 0 , 没 被 标 记 E ( S ) = ∑ i = 1 n E [ X i ] 同 时 , E [ X i ] 可 以 表 示 i 没 有 被 标 记 的 概 率 ∴ E [ S ] = ∑ i = 1 n i n / i p s : n / i 向 下 取 整 删除约数=死缓(标记)\\ X_i=\begin{cases}1,标记\\0,没被标记\end{cases}\\ E(S)=\sum_{i=1}^{n}E[X_i]\\ 同时,E[X_i]可以表示i没有被标记的概率\\ ∴E[S]=\sum_{i=1}^{n}\frac{i}{n/i}\\ ps:n/i向下取整 =Xi={1,0,E(S)=i=1nE[Xi],E[Xi]iE[S]=i=1nn/iips:n/i

期望线性性练习题

  • 给定 n 个硬币,第 i 个硬币的价值为 w[i],每次随机取⾛⼀个硬币,获得的收益是左右两个硬币的价值的乘积,求期望总价值
    X ( i , j ) = { 1 , ( i , j ) 有 贡 献 0 , ( i , j ) 无 贡 献 E ( S ) = ∑ i + 1 &lt; j P ( X ( i , j ) ) ∗ w i w j = ∑ i + 1 &lt; j w i w j ( j − i + 1 ) ( j − i ) p s : 老 师 讲 解 中 的 答 案 为 ∑ i + 1 &lt; j 2 w i w j ( j − i + 1 ) ( j − i ) , 迷 惑 X_{(i,j)}=\begin{cases}1,(i,j)有贡献\\0,(i,j)无贡献\end{cases}\\ E(S)=\sum_{i+1&lt;j}P(X_{(i,j)})*w_iw_j=\sum_{i+1&lt;j}\frac{w_iw_j}{(j-i+1)(j-i)}\\ ps:老师讲解中的答案为\sum_{i+1&lt;j}\frac{2w_iw_j}{(j-i+1)(j-i)},迷惑 X(i,j)={1,(i,j)0,(i,j)E(S)=i+1<jP(X(i,j))wiwj=i+1<j(ji+1)(ji)wiwjps:i+1<j(ji+1)(ji)2wiwj,
  • 有 N 个数 a[1…N],每次等概率选出两个数,然后合并成⼀个新的数放回来,得到的收益是新的数的值,求总收益的期望
    X i 代 表 a i 对 答 案 的 贡 献 次 数 E ( S ) = ∑ i = 1 n E ( X i ) ∗ a i = ∑ i = 1 n a i ∑ j = 1 n − 1 2 n − j + 1 X_i代表a_i对答案的贡献次数\\ E(S)=\sum_{i=1}^{n}E(X_i)*a_i=\sum_{i=1}^{n}a^i\sum_{j=1}^{n-1}\frac{2}{n-j+1} XiaiE(S)=i=1nE(Xi)ai=i=1naij=1n1nj+12
  • 给定⼀个数列 W[1…N],随机⼀个排列 H,如果 H[i] ⽐ H[i-1] 和 H[i+1] 都⼤,就获得 W[i] 的收益,求期望收益
    X i = { w i , h i &gt; m a x ( h i − 1 , h i + 1 ) 0 , h i ≤ m a x ( h i − 1 , h i + 1 ) E ( S ) = ∑ i = 1 n E ( X i ) = ∑ i = 1 n w i ∗ p i p i = { 1 3 , 2 ≤ i ≤ n − 1 1 2 , i = 1 或 i = n X_i=\begin{cases}w_i,h_i&gt;max(h_{i-1},h_{i+1})\\0,h_i\leq max(h_{i-1},h_{i+1})\end{cases}\\ E(S)=\sum_{i=1}^nE(X^i)=\sum_{i=1}^{n}w_i*p_i\\ p_i=\begin{cases}\frac{1}{3},2\leq i\leq n-1\\\frac{1}{2},i=1或i=n\end{cases}\\ Xi={wi,hi>max(hi1,hi+1)0,himax(hi1,hi+1)E(S)=i=1nE(Xi)=i=1nwipipi={31,2in121,i=1i=n
  • 给出⼀棵树,⼀开始每个点都是⽩的,每次选⼀个⽩点将他⼦树⾥所有点染⿊,求期望⼏次染⿊整个树
    可 以 发 现 , 染 黑 i 点 有 贡 献 , 当 且 仅 当 染 色 的 序 列 中 i 的 所 有 祖 先 在 i 之 后 被 染 色 X i = { 1 , i 产 生 贡 献 0 , i 不 产 生 贡 献 E ( S ) = ∑ i = 1 n E ( X i ) = ∑ i = 1 n 1 d e p i 可以发现,染黑i点有贡献,当且仅当染色的序列中i的所有祖先在i之后被染色\\ X_i=\begin{cases}1,i产生贡献\\0,i不产生贡献\end{cases}\\ E(S)=\sum_{i=1}^{n}E(X_i)=\sum_{i=1}^{n}\frac{1}{dep_i} ,i,iiXi={1,i0,iE(S)=i=1nE(Xi)=i=1ndepi1
  • 有 N 个⿊球,M个⽩球,每次等概率取出⼀个球(不放回),将取出来的球的颜⾊写成⼀个01序列,求 ”01” 的期望出现次数
    这 是 老 师 的 坑 这是老师的坑

  End.

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值