Leetcode-334. 递增的三元子序列

链接

334. 递增的三元子序列

题目

给你一个整数数组 nums ,判断这个数组中是否存在长度为 3 的递增子序列。

如果存在这样的三元组下标 (i, j, k) 且满足 i < j < k ,使得 nums[i] < nums[j] < nums[k] ,返回 true ;否则,返回 false 。

示例

示例 1:
输入:nums = [1,2,3,4,5]
输出:true
解释:任何 i < j < k 的三元组都满足题意

示例 2:
输入:nums = [5,4,3,2,1]
输出:false
解释:不存在满足题意的三元组

示例 3:
输入:nums = [2,1,5,0,4,6]
输出:true
解释:三元组 (3, 4, 5) 满足题意,因为 nums[3] == 0 < nums[4] == 4 < nums[5] == 6

说明

  • 1 <= nums.length <= 5 * 10e5
  • -2e31 <= nums[i] <= 2e31 - 1

思路一 (贪心)

本题的贪心思路比较巧妙,只需要设置两个参数,一个存储最小值,一个存储中间值,在遍历数组的过程中动态更新即可。

每遍历一个数字,就将他和当前最小值以及中间值作比较,若小于等于最小值 ,则替换当前的最小值;否则若小于等于中间值,则替换 中间值;否则若大于中间值,则说明已经找到了长度为 3 的递增数组,此时返回true。

虽然最小值和中间值越小越好(这样才更可能找到符合的最大值),但这里有个问题,为什么遇到最小值,把最小值也给替换了呢,这时中间值可能下标就小于当前最小值了,这时因为,这样不会影响结果,例如,[3,4,2,5],当遍历到3时,赋值最小值为3,当遍历到4时,赋值中间值为4,而当遍历到2时更新最小值为2,此时虽然最小值的下标比中间值下标更大了,但是,此时还潜在的隐藏了一个条件,中间数之前必然扔存在一个比中间值小的数,当遍历到数5的时候,此时最小值为2,中间值为4,最大值为5,返回true,但隐含的是[3,4,5]这组解。

而这样的做法除了不会对结果造成影响,还能避免后面找不到满足的解,例如下面这个例子,[3,4,2,3,4],如果遍历到2的时候不更新最小值,就无法发现后面[2,3,4]这个子数组。

C++ Code

class Solution {
public:
  bool increasingTriplet(vector<int>& nums) {
    if (nums.size() < 3) return false;
    int N1 = INT_MAX, N2 = INT_MAX;
    for (auto num : nums) 
    {
      if (num <= N1)  N1 = num;
      else if (num <= N2) N2 = num;
      else if (num > N2) return true;
    }
    return false;    
  }
};

复杂度

  • 时间复杂度:O(n),需要遍历数组一次,其中 n是数组nums 的长度。

  • 空间复杂度:O(1)。

思路二(双向遍历)

参考力扣官方题解

如果一个数num左边存在一个数比它小,右边存在一个数比它大,那么就找到了一组可行解。

因此,我们可以新建两个辅助数组维护数组nums 中的每个元素左边的最小值和右边的最大值,先从左往右遍历一遍,再从右往左遍历一遍,构造出这两个数组,最后遍历nums数组,根据两个辅助数组判断是否存在这样的解。

C++ Code

class Solution {
public:
    bool increasingTriplet(vector<int>& nums) {
        int n = nums.size();
        if (n < 3) return false;
        vector<int> leftMin(n);
        leftMin[0] = nums[0];
        for (int i = 1; i < n; i++) 
        {
            leftMin[i] = min(leftMin[i - 1], nums[i]);
        }
        vector<int> rightMax(n);
        rightMax[n - 1] = nums[n - 1];
        for (int i = n - 2; i >= 0; i--) 
        {
            rightMax[i] = max(rightMax[i + 1], nums[i]);
        }
        for (int i = 1; i < n - 1; i++) 
        {
            if (nums[i] > leftMin[i - 1] && nums[i] < rightMax[i + 1]) 
                return true;        
        }
        return false;
    }
};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值