Leetcode-240. 搜索二维矩阵 II

使用二分查找解决搜索二维矩阵问题
这篇博客讨论了一种高效算法,用于在给定的有序二维矩阵中搜索目标值。算法从矩阵的右上角开始,根据目标值与当前元素的比较,动态调整搜索方向。如果找到目标值,则返回true,否则返回false。这种方法适用于矩阵元素按行和列升序排列的情况。

链接

240. 搜索二维矩阵 II

题目

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

每行的元素从左到右升序排列。
每列的元素从上到下升序排列。

示例

示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true 

示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false 

说明

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= n, m <= 300
  • -10e9 <= matrix[i][j] <= 10e9
  • 每行的所有元素从左到右升序排列
  • 每列的所有元素从上到下升序排列
  • -10e9 <= target <= 10e9

思路

这题很容易想到二分法的思路,但这不是最优解。

我们可以从矩阵的右上方往左下方搜索,如果当前的值>target,由于每列的元素从上到下升序排列,必然当前列的元素都要更大,因此列数-1,如果当前的值<target,而又由于每行的元素从左到右升序排列,故将行数+1.

C++ Code

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        //从右上角开始检查,如果target>该值 行数+1 如果小于 列数-1
        int m=0, n=matrix[0].size()-1;
        while(m<matrix.size() && n>=0)
        {
            if(matrix[m][n]==target) return true;
            else if(matrix[m][n]<target) m++;
            else n--;
        }
        return false;
    }
};

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值