Leetcode-73. 矩阵置零

目录

链接

题目

示例

说明

进阶

思路一 O(mn)额外空间

Java Code 1

思路二 O(m+n)额外空间

Java Code 2

思路三 常量空间(2个标志位)

Java Code 3

思路四 常量空间(1个标志位)

Java Code 4


链接

73. 矩阵置零

题目

给定一个 m x n 的矩阵,如果一个元素为 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法

示例

 

示例 1:

输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]


示例 2:


输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

说明

m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-2e31 <= matrix[i][j] <= 2e31 - 1

进阶

一个直观的解决方案是使用  O(mn) 的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?

思路一 O(mn)额外空间

O(mn)额外空间的方法很容易就能想到,只需要再复制一份原始数组,根据复制的数组中0元素的横纵坐标,更改原始数组即可。

Java Code 1

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        boolean [][] arr = new boolean[m][n];
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(matrix[i][j]==0){
                    arr[i][j]=true;
                }
            }
        }

        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(arr[i][j]==true){
                    for(int a=0;a<m;a++){
                        matrix[a][j]=0;
                    }
                    for(int b=0;b<n;b++){
                        matrix[i][b]=0;
                    }
                }
            }
        }
    }
}

思路二 O(m+n)额外空间

O(m+n)的额外空间的思路其实也很容易想到,再思路一的基础上,把辅助数组改成一个长度为m的一维数组,一个长度为n的一维数组即可,两个数组分别存放有0的行和列。

Java Code 2

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;
        boolean [] arr1 = new boolean[m];
        boolean [] arr2 = new boolean[n];
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(matrix[i][j]==0){
                    arr1[i]=true;
                    arr2[j]=true;
                }
            }
        }

        for(int i=0;i<m;i++){
            if(arr1[i]==true){
                for(int b=0;b<n;b++){
                     matrix[i][b]=0;
                }
            }
        }


        for(int j=0;j<n;j++){
            if(arr2[j]==true){
                for(int a=0;a<m;a++){
                    matrix[a][j]=0;
                }
            }
        }
        
    }
}

思路三 常量空间(2个标志位)

对于一个m*n的矩阵,我们可以用第一行和第一列的元素作为标志位,标记改行或者该列是否需要全部改成0,例如在示例1中,第一次遍历时,matrix[1][1]为0,那么我们就把matrix[0][1]和matrix[1][0]标记为0,二次遍历时只需要遍历第一行和第一列哪些元素为0,就知道哪些行和列全部需要改成0,但是这样存在一个问题就是,没法判断本身第一行和第一列是否需要全部改成0,因此我们一开始需要先遍历第一行和第一列,设置2个常量,作为第一行和第一列是否原本就有0的标志位。

Java Code 3

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        boolean flagCol0 = false, flagRow0 = false;
        //判断第一列是否本身就有0
        for (int i = 0; i < m; i++) {
            if (matrix[i][0] == 0) {
                flagCol0 = true;
            }
        }
        //判断第一行是否本身就有0
        for (int j = 0; j < n; j++) {
            if (matrix[0][j] == 0) {
                flagRow0 = true;
            }
        }
        //遍历除第一行第一列外的所有元素,判断哪些行和列有0
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = matrix[0][j] = 0;
                }
            }
        }
        //将行和列有0的整行整列都变成0
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
        }
        //判断第一列是否需要全变成0
        if (flagCol0) {
            for (int i = 0; i < m; i++) {
                matrix[i][0] = 0;
            }
        }
        //判断第一行是否需要全变成0
        if (flagRow0) {
            for (int j = 0; j < n; j++) {
                matrix[0][j] = 0;
            }
        }
    }
}

思路四 常量空间(1个标志位)

有了思路三,思路四就简单了,我们既然用了第一行第一列所有元素作为标志位,另外还增加了两个常量标记第一行第一列本身是否含有0。我们可以发现matix[0][0]这个元素没有起到作用,因此这个元素也可以利用起来,用它来标记第一行是否出现 0,如此以来就又可以省下一个常量空间,仅需要一个常量来标记第一列是否出现0,但是为了为了防止matrix[0][0]==0,导致第一行提前被全部更新为0, 污染了第一行存储的标签。我们需要从最后一行开始,倒序地处理矩阵元素。

Java Code 4

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        boolean flagCol0 = false;
        for (int i = 0; i < m; i++) {
            if (matrix[i][0] == 0) {
                flagCol0 = true;
            }
            for (int j = 1; j < n; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = matrix[0][j] = 0;
                }
            }
        }
        for (int i = m - 1; i >= 0; i--) {
            for (int j = 1; j < n; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
            if (flagCol0) {
                matrix[i][0] = 0;
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值