目录
链接
题目
给定一个
m x n
的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
示例
示例 1:
输入:matrix = [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]
示例 2:
输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]
说明
m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-2e31 <= matrix[i][j] <= 2e31 - 1
进阶
一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?
思路一 O(mn)额外空间
O(mn)额外空间的方法很容易就能想到,只需要再复制一份原始数组,根据复制的数组中0元素的横纵坐标,更改原始数组即可。
Java Code 1
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
boolean [][] arr = new boolean[m][n];
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(matrix[i][j]==0){
arr[i][j]=true;
}
}
}
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(arr[i][j]==true){
for(int a=0;a<m;a++){
matrix[a][j]=0;
}
for(int b=0;b<n;b++){
matrix[i][b]=0;
}
}
}
}
}
}
思路二 O(m+n)额外空间
O(m+n)的额外空间的思路其实也很容易想到,再思路一的基础上,把辅助数组改成一个长度为m的一维数组,一个长度为n的一维数组即可,两个数组分别存放有0的行和列。
Java Code 2
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
boolean [] arr1 = new boolean[m];
boolean [] arr2 = new boolean[n];
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(matrix[i][j]==0){
arr1[i]=true;
arr2[j]=true;
}
}
}
for(int i=0;i<m;i++){
if(arr1[i]==true){
for(int b=0;b<n;b++){
matrix[i][b]=0;
}
}
}
for(int j=0;j<n;j++){
if(arr2[j]==true){
for(int a=0;a<m;a++){
matrix[a][j]=0;
}
}
}
}
}
思路三 常量空间(2个标志位)
对于一个m*n的矩阵,我们可以用第一行和第一列的元素作为标志位,标记改行或者该列是否需要全部改成0,例如在示例1中,第一次遍历时,matrix[1][1]为0,那么我们就把matrix[0][1]和matrix[1][0]标记为0,二次遍历时只需要遍历第一行和第一列哪些元素为0,就知道哪些行和列全部需要改成0,但是这样存在一个问题就是,没法判断本身第一行和第一列是否需要全部改成0,因此我们一开始需要先遍历第一行和第一列,设置2个常量,作为第一行和第一列是否原本就有0的标志位。
Java Code 3
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
boolean flagCol0 = false, flagRow0 = false;
//判断第一列是否本身就有0
for (int i = 0; i < m; i++) {
if (matrix[i][0] == 0) {
flagCol0 = true;
}
}
//判断第一行是否本身就有0
for (int j = 0; j < n; j++) {
if (matrix[0][j] == 0) {
flagRow0 = true;
}
}
//遍历除第一行第一列外的所有元素,判断哪些行和列有0
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][j] == 0) {
matrix[i][0] = matrix[0][j] = 0;
}
}
}
//将行和列有0的整行整列都变成0
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][0] == 0 || matrix[0][j] == 0) {
matrix[i][j] = 0;
}
}
}
//判断第一列是否需要全变成0
if (flagCol0) {
for (int i = 0; i < m; i++) {
matrix[i][0] = 0;
}
}
//判断第一行是否需要全变成0
if (flagRow0) {
for (int j = 0; j < n; j++) {
matrix[0][j] = 0;
}
}
}
}
思路四 常量空间(1个标志位)
有了思路三,思路四就简单了,我们既然用了第一行第一列所有元素作为标志位,另外还增加了两个常量标记第一行第一列本身是否含有0。我们可以发现matix[0][0]这个元素没有起到作用,因此这个元素也可以利用起来,用它来标记第一行是否出现 0,如此以来就又可以省下一个常量空间,仅需要一个常量来标记第一列是否出现0,但是为了为了防止matrix[0][0]==0,导致第一行提前被全部更新为0, 污染了第一行存储的标签。我们需要从最后一行开始,倒序地处理矩阵元素。
Java Code 4
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
boolean flagCol0 = false;
for (int i = 0; i < m; i++) {
if (matrix[i][0] == 0) {
flagCol0 = true;
}
for (int j = 1; j < n; j++) {
if (matrix[i][j] == 0) {
matrix[i][0] = matrix[0][j] = 0;
}
}
}
for (int i = m - 1; i >= 0; i--) {
for (int j = 1; j < n; j++) {
if (matrix[i][0] == 0 || matrix[0][j] == 0) {
matrix[i][j] = 0;
}
}
if (flagCol0) {
matrix[i][0] = 0;
}
}
}
}