*所有解*
若佩尔方程x^2 - d * y^2 = 1
的最小特解是( x1 , y1 )
那么有迭代公式 x[n]=x[n-1]*x[1]+d*y[n-1]*y[1];
y[n]=x[n-1]*y[1]+y[n-1]*x[1];
*特解计算方法*
1.连分数法
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
ll a[20000];
bool pell_minimum_solution(ll n,ll &x0,ll &y0){
ll m=(ll)sqrt((double)n);
double sq=sqrt(n);
int i=0;
if(m*m==n)return false;//当n是完全平方数则佩尔方程无解
a[i++]=m;
ll b=m,c=1;
double tmp;
do{
c=(n-b*b)/c;
tmp=(sq+b)/c;
a[i++]=(ll)(floor(tmp));
b=a[i-1]*c-b;
//printf("%lld %lld %lld\n",a[i-1],b,c);
}while(a[i-1]!=2*a[0]);
ll p=1,q=0;
for(int j=i-2;j>=0;j--){
ll t=p;
p=q+p*a[j];
q=t;
//printf("a[%d]=%lld %lld %lld\n",j,a[j],p,q);
}
if((i-1)%2==0){x0=p;y0=q;}
else{x0=2*p*p+1;y0=2*p*q;}
return true;
}
int main(){
ll n,x,y;
while(~scanf("%lld",&n)){
if(pell_minimum_solution(n,x,y)){
printf("%lld^2-%lld*%lld^2=1\t",x,n,y);
printf("%lld-%lld=1\n",x*x,n*y*y);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
2.暴力法:
typedef long long ll;
int x,y;
void mysearch()
{
y=1;
while(1){
x=(ll)sqrt(d*y*y+1);
if(x*x-d*y*y==1){
break;
}
y++;
}
}