计算佩尔方程的解

*所有解* 
若佩尔方程x^2 - d * y^2 = 1的最小特解是( x1 , y1 )那么有迭代公式 
x[n]=x[n-1]*x[1]+d*y[n-1]*y[1]; 
y[n]=x[n-1]*y[1]+y[n-1]*x[1];
 
*特解计算方法* 
1.连分数法

#include<cstdio>  
#include<cstring>  
#include<cmath>  
#include<cstdlib>  
using namespace std;  
typedef long long ll;  
ll a[20000];  
bool pell_minimum_solution(ll n,ll &x0,ll &y0){  
    ll m=(ll)sqrt((double)n);  
    double sq=sqrt(n);  
    int i=0;  
    if(m*m==n)return false;//当n是完全平方数则佩尔方程无解  
    a[i++]=m;  
    ll b=m,c=1;  
    double tmp;  
    do{  
        c=(n-b*b)/c;  
        tmp=(sq+b)/c;  
        a[i++]=(ll)(floor(tmp));  
        b=a[i-1]*c-b;  
        //printf("%lld %lld %lld\n",a[i-1],b,c);  
    }while(a[i-1]!=2*a[0]);  
    ll p=1,q=0;  
    for(int j=i-2;j>=0;j--){  
        ll t=p;  
        p=q+p*a[j];  
        q=t;  
        //printf("a[%d]=%lld %lld %lld\n",j,a[j],p,q);  
    }  
    if((i-1)%2==0){x0=p;y0=q;}  
    else{x0=2*p*p+1;y0=2*p*q;}  
    return true;  
}  

int main(){  
    ll n,x,y;  
    while(~scanf("%lld",&n)){  
        if(pell_minimum_solution(n,x,y)){  
            printf("%lld^2-%lld*%lld^2=1\t",x,n,y);  
            printf("%lld-%lld=1\n",x*x,n*y*y);  
        }  
    }  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

2.暴力法:

typedef long long ll;

int x,y;
void mysearch()
{
    y=1;
    while(1){
        x=(ll)sqrt(d*y*y+1);
        if(x*x-d*y*y==1){
            break;
        }
        y++;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值