HOG特征之小白手册

HOG特征(Histogram of Oriented Gradients)是一种用于物体检测的特征描述子。本文详细解释了从计算梯度、确定方向、构建直方图到完整提取HOG特征的过程。通过8×8像素的细胞和16×16像素的块,形成3780维特征描述子,用于64×128像素的窗口。HOG特征对光照变化有较好鲁棒性,但在尺度和角度变化上表现不足。
摘要由CSDN通过智能技术生成

hog特征,即方向梯度直方图(Histogram of Oriented Gradient, HOG)特征,是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。我们将从方向梯度直方图这个名字入手,逐步讲解hog特征提取。

1.梯度

既然是叫方向梯度直方图特征,那我们首先就需要知道,什么是梯度。梯度一词使用广泛,不同的地方意义可能不同,但都包含一个元素,就是高低,像生活中的梯子,也就是高低不同所产生的。梯度就是高低之差,那我们这里的高低是指什么呢,自然是指像素的大小,所以梯度就是相邻像素大小之差。

具体计算梯度时方法可能不尽相同,我们这里使用如下算子来计算每个像素的梯度:

即每个像素水平梯度为左右两个像素大小相减,垂直梯度为上下两个像素大小相减:

G(x,y)=g_{x}(x,y)+g_{y}(x,y)

g_{x}(x,y)=I(x+1,y)-I(x-1,y)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值