需要引入的头文件不同
map: #include < map >
unordered_map: #include < unordered_map >
内部实现机理不同
- map: map内部实现了一个红黑树(红黑树是非严格平衡二叉搜索树,而AVL是严格平衡二叉搜索树),红黑树具有自动排序的功能,因此map内部的所有元素都是有序的,红黑树的每一个节点都代表着map的一个元素。因此,对于map进行的查找,删除,添加等一系列的操作都相当于是对红黑树进行的操作。map中的元素是按照二叉搜索树(又名二叉查找树、二叉排序树,特点就是左子树上所有节点的键值都小于根节点的键值,右子树所有节点的键值都大于根节点的键值)存储的,使用中序遍历可将键值按照从小到大遍历出来。
- unordered_map: unordered_map内部实现了一个哈希表(也叫散列表,通过把关键码值映射到Hash表中一个位置来访问记录,查找的时间复杂度可达到O(1),其在海量数据处理中有着广泛应用)。因此,其元素的排列顺序是无序的。
优缺点以及适用处
map:
优点:
有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作
红黑树,内部实现一个红黑书使得map的很多操作在lgn的时间复杂度下就可以实现,因此效率非常的高
缺点:
空间占用率高,因为map内部实现了红黑树,虽然提高了运行效率,但是因为每一个节点都需要额外保存父节点、孩子节点和红/黑性质,使得每一个节点都占用大量的空间
适用处:对于那些有顺序要求的问题,用map会更高效一些
unordered_map:
优点: 因为内部实现了哈希表,因此其查找速度非常的快
缺点: 哈希表的建立比较耗费时间
适用处:对于查找问题,unordered_map会更加高效一些,因此遇到查找问题,常会考虑一下用unordered_map
总结:
- 内存占有率的问题,就转化成红黑树 VS hash表 , 还是unorder_map占用的内存要高。
- 但是unordered_map执行效率要比map高很多
- 对于unordered_map或unordered_set容器,其遍历顺序与创建该容器时输入的顺序不一定相同,因为遍历是按照哈希表从前往后依次遍历的
map详细用法可以看我的另一篇博客
此外map的前一个元素可以是vector,pair等,即可以存在map<pair<int,int>,int> mymap这样的声明,但是不能使用unordered_map<pair<int,int>,int> mymap这样的声明。
这里来看一下map和unordered_map内部元素顺序问题:
unordered_map<int, string> myMap = { { 5, "张大" },{ 6, "李五" } };//使用{}赋值
myMap[2] = "李四"; //使用[ ]进行单个插入,若已存在键值2,则赋值修改,若无则插入。
myMap.insert(pair<int, string>(3, "陈二"));//使用insert和pair插入
//遍历输出+迭代器的使用
auto iter = myMap.begin();//auto自动识别为迭代器类unordered_map<int,string>::iterator
while (iter != myMap.end())
{
cout << iter->first << "," << iter->second << endl;
++iter;
}
输出顺序为元素插入顺序:
这里注意map或者unordered_map的迭代器都只能++、--,不能使用it+=1,也不能使用mymap.begin()+1这种访问第二个元素的迭代器。
map<int, string> mymap = { { 5, "张大" },{ 6, "李五" } };//使用{}赋值
mymap[2] = "李四"; //使用[ ]进行单个插入,若已存在键值2,则赋值修改,若无则插入。
mymap.insert(pair<int, string>(3, "陈二"));//使用insert和pair插入
//遍历输出+迭代器的使用
for (auto x : mymap)//这里我们换一种循环方式,也可以用迭代器遍历
{
cout << x.first << "," << x.second << endl;
}
输出元素顺序按照关键字排序: