【前言】:本文讲解【力扣829 连续整数求和】的数学推理与JAVA实现过程。
一、题目描述
1. 题干
给定一个正整数 n ,返回满足和为n的连续正整数的组数。其中1 <= n <= 10^9
2. 样例
输入: n = 5
输出: 2
解释: [ 5 ] = [ 2 + 3 ],共有两组连续整数( [5] , [2,3] )求和后为 5。
输入: n = 9
输出: 3
解释: [ 9 ] = [ 4 + 5 ] = [ 2 + 3 + 4 ]
输入: n = 15
输出: 4
解释: [ 15 ] = [ 8 + 7 ] = [ 4 + 5 + 6 ] = [ 1 + 2 + 3 + 4 + 5 ]
二、初步分析
为了方便讨论,我们不妨设一组连续正整数的首项为 a 、长度为 k ,考察其范围,显然有1<= a <= n 、1<= k <= n。
接着考虑该组正整数的和 F( a , k ),有 F( a , k )=( 首项 + 尾项 )* 长度 / 2 也即( 2a + k - 1)k / 2 。
当 F( a , k )等于 n 时,有【 2n = ( 2a + k - 1 )k 】,因此满足条件的 k 不仅仅要是 <= n 的正整数,还必须能被 2n 整除。
由于 n 是给定的,所以找到了满足这样条件的 k 后就可以利用上式求出2a。若 2a 是正偶数,那就成功找到了一组 a 和 k 使得 F( a , k )= n。
将上述思路转换为对应代码如下
class Solution {
public int consecutiveNumbersSum(int n) {
int n2 = n * 2; // 求2n
int ret = 0;
// 在1~n内搜寻能被2n整除的k
for (int k = 1; k <= n; k++)
if (n2 % k == 0) {
int a2 = n2 / k + 1 - k; // 求2a
// 判断该k对应的2a是不是正偶数
if (a2 > 0 && a2 % 2 == 0)
ret++;
}
return ret;
}
}
但是很遗憾,该代码是超时的、需要我们进一步优化。
三、改进优化
仔细思考后会发现,超时的原因是 k 的搜寻范围过大。
对于超时样例933320757,需要在[ 1 , 933320757 ]内搜寻合适的 k ,而事实上从 1 开始一直加到 43205 得到的和就已经超过了933320757,43205就是 k 能取到的最大值,在[ 43205, 933320757 ]中搜寻所花费的大量时间完全是多余无意义的。因此优化的关键在于限定 k 的上限。
不难想到,确定 k 的最大值,无非是在 a = 1的情况下,求 k 的范围使 F( a , k )<= n 。将 a = 1 代入得( 1 + k )k <= 2n,则必有 k^2 <= 2n,也即 k <= √(2n)。根据该范围对之前的代码进行修改,即可通过该题。源代码和通过情况如下:
class Solution {
public int consecutiveNumbersSum(int n) {
int n2 = n * 2; // 求2n
int ret = 0;
// 在1~√2n内搜寻能被2n整除的k
for (int k = (int) Math.sqrt(n2); k >= 1; k--)
if (n2 % k == 0) {
int a2 = n2 / k + 1 - k; // 求2a
// 判断该k对应的2a是不是正偶数
if (a2 > 0 && a2 % 2 == 0)
ret++;
}
return ret;
}
}