2019牛客国庆集训派对day2 K 2018

本文介绍了一种基于质因数分解的高效算法,用于解决区间内特定数学问题。通过分解变量x到其质因数形式,算法枚举x的余数并在指定区间内计数,适用于寻找满足特定条件的数的个数。文中提供了实现代码及复杂度分析。

我这里在原题目上面加了扩充

修改:将2018改为x(x不是很大 ,其他题面内容不变
方法:首先将x分解质因子,变为 x=p1e1∗p2e2∗...∗pnenx=p_{1}^{e1}*p_{2}^{e2}*...*p_{n}^{en}x=p1e1p2e2...pnen的形式
在[a,b]区间我们枚举 %x的余数 i∈[0,x−1]i\in [0,x-1]i[0,x1] ,.然后将 i 里x的质因子的数除掉,不够的乘起来,最后得到一个数y,相当于找到最小的y满足 i∗y%x=0i*y\%x = 0iy%x=0,则i对应的是[c,d]里y倍数的数量
单次询问时间复杂度:O(x∗xpri数量)O(x*x_{pri数量})O(xxpri)
将下面代码修改下可以过掉那题(文章最后面)。

代码如下

#include <bits/stdc++.h>
#define LL long long
const int N = 2e5+5;
using namespace std;
int x,a,b,c,d;
LL s1(int l,int r,int mo){//得到[l,r]里%x==mo的数量
    if(mo==0)mo=x;
    int ans=r/x - (l-1)/x;
    if(r%x>=mo)ans++;
    if((l-1)%x>=mo)ans--;
    return ans;
}
LL s2(int l,int r,int mo){//得到[l,r]为mo倍数的数量
    return r/mo-(l-1)/mo;
}
int pr[100][2],len;
int main(){
    cin>>x>>a>>b>>c>>d;
    int lx=x;
    for(int i=2;i*i<=lx;i++)
        if(lx%i==0){
            pr[++len][0]=i;
            while(lx%i==0)
                pr[len][1]++,lx/=i;
        }
    if(lx!=1)pr[++len][0]=lx,pr[len][1]=1;

    LL ans=s1(a,b,0)*(d-c+1);//特判i=0
    for(int i=1;i<x;i++){
        int y=1,li=i;
        for(int j=1;j<=len;j++){
            int js=0;
            while(li%pr[j][0]==0)
                li/=pr[j][0],js++;
            if(js>=pr[j][1])js=0;
            else js=pr[j][1]-js;
            while(js--)
                y*=pr[j][0];
        }
        ans+=s1(a,b,i)*s2(c,d,y);
    }
    printf("%lld\n",ans);
    return 0;
}
/**
2018 1 2 1 2018
2018 1 2018 1 2018
2018 1 1000000000 1 1000000000
*/

能AC这题的代码

#include <bits/stdc++.h>
#define LL long long
const int N = 2e5+5;
using namespace std;
int x,a,b,c,d;
LL s1(int l,int r,int mo){//得到[l,r]里%x==mo的数量
    if(mo==0)mo=x;
    int ans=r/x - (l-1)/x;
    if(r%x>=mo)ans++;
    if((l-1)%x>=mo)ans--;
    return ans;
}
LL s2(int l,int r,int mo){//得到[l,r]为mo倍数的数量
    return r/mo-(l-1)/mo;
}
int pr[100][2],len;
int main(){
    x=2018;
    int lx=x;
    for(int i=2;i*i<=lx;i++)
        if(lx%i==0){
            pr[++len][0]=i;
            while(lx%i==0)
                pr[len][1]++,lx/=i;
        }
    if(lx!=1)pr[++len][0]=lx,pr[len][1]=1;
    while(cin>>a>>b>>c>>d){
        LL ans=s1(a,b,0)*(d-c+1);//特判i=0
        for(int i=1;i<x;i++){
            int y=1,li=i;
            for(int j=1;j<=len;j++){

                int js=0;
                while(li%pr[j][0]==0)
                    li/=pr[j][0],js++;
                if(js>=pr[j][1])js=0;
                else js=pr[j][1]-js;
                while(js--)
                    y*=pr[j][0];
            }
           // printf("y=%d\n",y);
           //printf("i=%d %d %d\n",i,y,s1(a,b,i)*s2(c,d,y));
            ans+=s1(a,b,i)*s2(c,d,y);
        }
        printf("%lld\n",ans);
    }


    return 0;
}
/**

*/
内容概要:本文介绍了基于Matlab代码实现的【EI复现】考虑网络动态重构的分布式电源选址定容优化方法,重点研究在电力系统中结合网络动态重构技术进行分布式电源(如光伏、风电等)的最佳位置选择与容量配置的双层优化模型。该方法综合考虑配电网结构变化与电源布局之间的相互影响,通过优化算法实现系统损耗最小、电压稳定性提升及可再生能源消纳能力增强等多重目标。文中提供了完整的Matlab仿真代码与案例验证,便于复现实验结果并拓展应用于微网、储能配置与配电系统重构等相关领域。; 适合人群:电力系统、电气工程及其自动化等相关专业的研究生、科研人员及从事新能源规划与电网优化工作的工程师;具备一定Matlab编程基础和优化理论背景者更佳。; 使用场景及目标:①用于科研论文复现,特别是EI/SCI级别关于分布式能源优化配置的研究;②支【EI复现】考虑网络动态重构的分布式电源选址定容优化方法(Matlab代码实现)撑毕业设计、课题项目中的电源选址定容建模与仿真;③辅助实际电网规划中对分布式发电接入方案的评估与决策; 阅读建议:建议结合提供的网盘资源下载完整代码与工具包(如YALMIP),按照文档目录顺序逐步学习,注重模型构建思路与代码实现细节的对应关系,并尝试在不同测试系统上调试与扩展功能。
本系统采用SpringBoot与Vue技术架构,实现了完整的影院票务管理解决方案,包含后台数据库及全套可执行代码。该系统在高等院校计算机专业毕业设计评审中获得优异评价,特别适用于正在进行毕业课题研究的学生群体,以及需要提升项目实践能力的开发者。同时也可作为课程结业作业或学期综合训练项目使用。 系统提供完整的技术文档和经过全面测试的源代码,所有功能模块均通过多轮调试验证,保证系统稳定性和可执行性。该解决方案可直接应用于毕业设计答辩环节,其技术架构符合现代企业级开发规范,采用前后端分离模式,后端基于SpringBoot框架实现业务逻辑和数据处理,前端通过Vue.js构建用户交互界面。 系统核心功能涵盖影院管理、影片排期、座位预定、票务销售、用户管理等模块,实现了从影片上架到票务核销的完整业务流程。数据库设计遵循第三范式原则,确保数据一致性和完整性。代码结构采用分层架构设计,包含控制器层、服务层、数据访问层等标准组件,便于后续功能扩展和维护。 该项目不仅提供了可直接部署运行的完整程序,还包含详细的技术实现文档,帮助开发者深入理解系统架构设计理念和具体实现细节。对于计算机专业学生而言,通过研究该项目可以掌握企业级应用开发的全流程,包括需求分析、技术选型、系统设计和测试部署等关键环节。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值