lee字符串题目

本文探讨了解码字符串的算法和回文字符串的处理方法。讲解了动态规划、中心扩散法解决回文串问题,并分享了对LeetCode 394题的解题思路。同时,文章提到了字符串比较的细节,包括compareTo方法的使用和自定义比较器。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
思路看了就懂了,
不过强调几个点。
首先是ans在循环时候就应该知道,当ans = “”只要有一次,就直接跳出循环。,后面没有任何对比的意义了
ans和strs[]中数据进行比较时候,只要有一个前缀没对上,就应该立刻跳出循环,因为没有对比的意义了。

class Solution {
   
    public String longestCommonPrefix(String[] strs) {
   
        if(strs == null){
   
            return "";
        }

        String temp = strs[0];
        for(int i = 1;i < strs.length;i++){
   
            int j = 0;//后面要用,所以定义在这里
            for(;j < temp.length() && j < strs[i].length();j++){
   
                if(strs[i].charAt(j) != temp.charAt(j)){
   
                    break;//直接跳出循环
                  
                }
            }
            temp = temp.substring(0,j);//将字符串截取下来
            if(temp.equals("")){
   
                return temp;//一次循环结束后倘若temp为""直接跳出循环
            }
        }
        return temp;

    }
}

在这里插入图片描述
方法1
用一个栈来处理
栈里遇到一个(就保存一下下标,然后遇到一个),就将上一个保存好的下标弹出去,这样就组成了一个()两个加在一起就是一个(),翻转()里面的数据,记住是在数组上用双指针翻转,翻转之后将字符串中所有()去除。

将所有数据加进一个StringBUffer里面,SB功能很齐全,能插入,能翻转,比较省事。
1.用栈来帮助协调一切东西。

1.SB里先装字符,一个个装进去,一旦遇到
(
就把sb中东西扔进栈里,说明到时候用来返回到

在这里插入图片描述
遇到(之前,所有字符串扔进栈里面,
压在栈底,等着最后取出来,取出来时候放在最前面就行了
因为栈底1的元素(a,b)就是在cdea之前,到时候我们可以把
cdea翻转了,然后把a,b继续插在它前面

当遇到一个)时候,将sb转换,sb中存的就是(到)中的值
将sb逆转,然后将栈里元素,栈里元素应该是(之前的字符串
将sb逆转之后,将栈里保存的(之前的东西全部放sb最前面,相当于完成了一次翻转
然后指针继续走,如果遇到了(继续将sb中代表的前面排列好的数据,放进栈里去,然后将(后面的放进sb,重复上面操作。

说变了,就是将一个完整()里面的放进SB里然后进行翻转
翻转之后将它前面的东西从栈里拿出来,放在它头头上,然后继续往后遍历
一个(就是压进去一个栈。

class Solution {
   
    public String reverseParentheses(String s) {
   
       //直接使用栈来处理这个题目很幸福
       //遇到正常字符串直接加到sb中去
       //遇到括号就是一个栈

       //用一个sb作为返回值
        StringBuffer sb = new StringBuffer();
        Stack<String> stack = new Stack<>();
        
        int i = 0;
        while(i != s.length()){
   
            char ch = s.charAt(i);
            if(ch == '('){
   
                //进栈
                //将前面的东西进栈
                stack.push(sb.toString(
题目描述: 给定一个字符串s,求出该字符串的最长重复子串长度。 输入格式: 第一行为一个整数n,表示字符串的长度。 第二行为一个字符串s。 输出格式: 输出一个整数,表示该字符串的最长重复子串长度。 样例输入: 6 ababab 样例输出: 3 算法1: (后缀数组) $O(nlog^2n)$ 我们可以将字符串的所有后缀排序,然后求相邻两个后缀的最长公共前缀,最后所有公共前缀中的最大值即可。 具体来说,我们可以使用后缀数组来对字符串的所有后缀进行排序,然后使用倍增算法求出相邻两个后缀的最长公共前缀。 时间复杂度: - 后缀数组的构建时间复杂度为O(nlogn)。 - 最长公共前缀的计算时间复杂度为O(nlogn)。 因此,总时间复杂度为O(nlog^2n)。 C++ 代码 算法2: (哈希) $O(nlogn)$ 我们可以将字符串s拆分成多个子串,然后对每个子串进行哈希,最后使用二分查找的方式找到最长的重复子串。 具体来说,我们可以将字符串s拆分成多个子串,然后对每个子串进行哈希。哈希算法可以使用Rabin-Karp算法,时间复杂度为O(n)。 找到哈希值相同的两个子串后,我们可以使用二分查找来判断这两个子串的最长公共前缀的长度。二分查找的时间复杂度为O(logn)。 时间复杂度: - 哈希的时间复杂度为O(n)。 - 二分查找的时间复杂度为O(logn)。 因此,总时间复杂度为O(nlogn)。 C++ 代码 算法3: (Manacher算法) $O(n)$ Manacher算法是一种可以在线性时间内找到一个字符串的所有回文子串的算法。 该算法的核心思想是利用回文子串的对称性,来避免重复计算。具体来说,我们可以通过维护最右边的回文子串的右端点来避免重复计算。 时间复杂度: 该算法的时间复杂度为O(n)。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值