60. 排列序列(递归回溯+逆康托展开)

文章介绍了两种解决排列问题的方法。第一种是递归加回溯的方式,通过预先计算所有排列并存储,然后在需要时直接获取。这种方法时间复杂度高,为O(n!)。第二种方法利用逆康托展开的原理,通过计算每个位置的数值来生成指定位置的排列,降低了时间复杂度。
摘要由CSDN通过智能技术生成

题目链接:力扣

 方法一:递归+回溯

通过递归枚举出所有的排列组合,保存到结果中,第k个即可

直接使用递归+回溯会超时,因为题目中n的最大值为9,所以可以在类初始化时提前将所有长度为n的排列组合记录下来,在getPermutation(int n, int k)函数中,直接从保存的排列组合中获取值

具体算法如下:

  1. 定义递归函数:process(int n, boolean[] used, List<String> result, StringBuilder sb)
    1. 参数:
      1. n:集合的长度
      2. used:记录数字 i 是否已经在排列中(下标从0开始,used[0]代表数字1是否已经在排列中的情况)
      3. result:保存所有的排列结果
      4. sb:保存当前的一种排列 
  2. 递归终止条件
    1. 如果sb.length()==n,说明sb中保存的是一种排列,result.add(sb.toString())
  3. 否则,从1到n循环选择当前加入到排列中的数字(可以保证result的排列是按照升序排列的)
    1. 如果used[i-1]==false,说明数字 i 还没有被加入到排列中
      1. sb.append(i)
      2. used[i-1]=true
      3. process(n, used, result, sb):递归的加入下一个数字
      4. 回溯:
        1. used[i-1]=false,重新标记为false,可以供下次选择
        2. sb.deleteCharAt(sb.length()-1):将刚才选择的元素从排列中删除

AC代码:

class Solution {
    public static List<List<String>> data= new ArrayList<>();
    //类初始化时打表
    static {
        for (int i = 0;i<9;i++){
            data.add(init(i+1));
        }
    }
    //按照升序返回长度为n的的集合的所有排列
    public static List<String> init(int n){
        StringBuilder sb = new StringBuilder();
        List<String> result = new ArrayList<>();
        boolean[] used = new boolean[n];
        process(n, used, result, sb);
        return result;
    }

    public static void process(int n, boolean[] used, List<String> result, StringBuilder sb) {
        if (sb.length() == n) {
            result.add(sb.toString());
        }
        for (int i = 1; i <= n; i++) {
            if (!used[i-1]) {
                sb.append(i);
                used[i-1] = true;
                process(n, used, result, sb);
                used[i-1] = false;
                sb.deleteCharAt(sb.length() - 1);
            }
        }
    }

    public static String getPermutation(int n, int k) {
        return data.get(n-1).get(k-1);
    }
}

 递归的方式,时间复杂度比较高,时间复杂度和空间复杂度为O(n!)

方法二:其实就是逆康托展开的思想,尼康托展开可以看这篇博文:康托展开&逆康托展开详解

找规律:对于递增的排列,第i位固定后,后面的所有位的排列个数是固定的

  1. 第一位:
    1. 第一位为1时,一共有(n-1)! 种排列
    2. 第一位为2时,一共有(n-1)! 种排列
    3. ...
    4. 第一位为n时,一共有(n-1)! 种排列
  2. 所以对于第k个排列的第1位的数值是可以计算出来的
    1. 第一位的数值 num = \frac{k-1}{(n-1)!}+1  ,num表示集合中的第几个数
  3. 第一位确定后,只需要求解剩下的n-1位排列种第 k1个排列,k1也是可以计算出来的
    1. k1满足:k1=(k-1)%(n-1)! + 1,这里(k-1)是为了防止k的值恰好等于(n-1)!的情况,因为这个时候k1就等于1了,但是k1应该是剩下得n-1位排列得第n-1个排列而不是第一个排列,所以先减1取模后,再加上一个1,让其值继续为n-1,上述求解num时先k-1也是这个原因
    2. 假设第一位为2,则之后求解相当于集合{1,3,...,n}这n-1个数的第k1个排列,现在的目标是确定这n-1个数组成的排列的第一位,然后在确定剩下的n-2个数组成的排列种的第一位,依次类推

AC代码:

class Solution {
    public static String getPermutation(int n, int k) {
        int[] factorial = new int[n];
        factorial[0] = 1;
        //阶乘
        for (int i = 1; i < n; i++) {
            factorial[i] = i * factorial[i - 1];
        }
        StringBuilder sb = new StringBuilder();
        boolean[] used = new boolean[n + 1];
        //确定每一位
        for (int i = 1; i <= n; i++) {
            int num = (k - 1) / factorial[n - i] + 1;
            for (int j = 1; j <= n; j++) {
                if (!used[j]) {
                    num--;
                    if (num == 0) {
                        sb.append(j);
                        used[j] = true;
                        break;
                    }
                }
            }
            k=(k-1)%factorial[n-i]+1;
        }
        return sb.toString();
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值