73. 矩阵置零

题目链接:力扣

解题思路:

方法一:比较容易想到的方向,使用两个数组row和col保存有0的行或者列,然后将有0的那一行或那一列的所有元素都设置为0

AC代码

class Solution {
    public void setZeroes(int[][] matrix) {
        int x = 0;
        boolean[] row  = new boolean[matrix.length];
        boolean[] col = new boolean[matrix[0].length];

        for (int i = 0;i<matrix.length;i++){
            for (int j =0;j<matrix[0].length;j++){
                if (matrix[i][j]==0){
                    row[i]=true;
                    col[j]=true;
                }
            }
        }

        for (int i = 0;i<matrix.length;i++){
            for (int j =0;j<matrix[0].length;j++){
                if (row[i]||col[j]){
                    matrix[i][j]=0;
                }
            }
        }
    }
}

 

这种方式的时间复杂度为O(mn) ,空间复杂度为O(m+n)

解法二:空间复杂度为O(1)

 可以使用矩阵的第一行和第一列来记录当前行或当前列是否需要更新

算法步骤:

  1. 遍历整个矩阵,如果某个元素为0,就将该元素所在的行和列的首元素标记为0,表示该行和列需要置0。但是需要使用两个额外的变量来记录原来的第一行和第一列是否有0。
  2. 更新时从第二行和第二列开始更新,如果某行或某列的首元素为0,说明该行或该列需要置0,
  3. 最后判断第一行和第一列是否需要置0

AC代码

class Solution {
    public static void setZeroes(int[][] matrix) {
        boolean firstRow = false;
        boolean firstCol = false;
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                    if (i == 0) {
                        firstRow = true;
                    }
                    if (j == 0) {
                        firstCol = true;
                    }
                }
            }
        }
        for (int i = 1; i < matrix.length; i++) {
            for (int j = 1; j < matrix[0].length; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
        }

        if (firstRow) {
            Arrays.fill(matrix[0], 0);
        }
        if (firstCol) {
            for (int i = 0; i < matrix.length; i++) {
                matrix[i][0] = 0;
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值