题目链接:力扣
解题思路:
方法一:递归+回溯+剪枝
- tem列表:保存选择的k个数
- result列表:保存所有的k个数的组合
- 定义递归函数:void process(int n,int k,int cur):
- 参数:
- n:表示区间[1,n]
- k:k个组合
- cur:当前待选择区间中的第curr个数
- 递归函数从[1,n]中选择k个数加入到tem中
- 参数:
- 递归终止条件:
- 如果tem.size() + n -cur+1 < k:显然这种情况下剩余的数字就算全选,也不能与tem中的数组成k个数,进行剪枝,直接return
- 如果tem.size() == k:tem中保存了一种k个数的组合,将tem加入到result中
- 对于区间[1,n]中的第cur个数,可以选择,也可以不选择,
- 选择:将cur加入到tem列表中,然后进入下一层递归,process(n,k,cur+1),因为每次curr+1,待选择的数字都是后面还未选择过的数,这样就保证了不重复。
- 回溯:上一步选择了cur,也可以不选择cur,这个时候需要进行回溯:
- tem.remove(tem.size() -1):将cur从tem中移除
- 进入下一层递归,从curr+1开始选:process(n,k,cur+1)
AC代码
class Solution {
List<Integer> tem = new ArrayList<>();
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> combine(int n, int k) {
process(n, k, 1);
return result;
}
public void process(int n, int k, int cur) {
if (tem.size() + n - cur + 1 < k) {
return;
}
if (tem.size() == k) {
result.add(new ArrayList<>(tem));
return;
}
tem.add(cur);
process(n, k, cur + 1);
tem.remove(tem.size() - 1);
process(n, k, cur + 1);
}
}