前两篇博客我们讨论了如何处理时间序列数据以及怎样应用ARIMA模型进行预测,此篇我们来分析一下近几年的股票数据,然后用ARIMA模型做一下预测。由于股票数据不是很稳定,受一些政策和其它环境的影响,所以效果不是很好,主要是通过这个小项目具体应用一下。
获取股票数据
我们这里使用pandas_datareader来获取我们所需的股票数据,如果No modle,可以pip install一下。
#导入包
import pandas as pd
import pandas_datareader
import fix_yahoo_finance as yf
import matplotlib.pyplot as plt
import datetime
#爬取08-18十年数据
start = datetime.datetime(2008,1,1)
end = datetime.datetime(2018,1,1)
#必须要调用这个函数
yf.pdr_override()
#股票数据
stock_data = pandas_datareader