Python时间序列实战之ARIMA股票预测

本文通过Python的pandas_datareader获取股票数据,进行重采样、差分处理,并利用ACF和PACF分析,最后应用ARIMA模型进行股票预测。尽管因市场因素预测效果受限,但该项目展示了ARIMA模型在时间序列分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前两篇博客我们讨论了如何处理时间序列数据以及怎样应用ARIMA模型进行预测,此篇我们来分析一下近几年的股票数据,然后用ARIMA模型做一下预测。由于股票数据不是很稳定,受一些政策和其它环境的影响,所以效果不是很好,主要是通过这个小项目具体应用一下。

获取股票数据

我们这里使用pandas_datareader来获取我们所需的股票数据,如果No modle,可以pip install一下。

#导入包
import pandas as pd
import pandas_datareader
import fix_yahoo_finance as yf
import matplotlib.pyplot as plt
import datetime

#爬取08-18十年数据
start = datetime.datetime(2008,1,1)
end = datetime.datetime(2018,1,1)
#必须要调用这个函数
yf.pdr_override()
#股票数据
stock_data = pandas_datareader
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值