思路:回溯
1、三层 for 循环,遍历行、列、1-9数字;
2、不需要结束条件,因为遍历到头了自然就结束了
3、所以需要返回值,否则就无限循环了。对当前位置,遍历1-9,向下dfs,找到合适的就立刻返回true,如果1-9试完了不行,就即使返回false;最终没有false,那就是返回true
class Solution {
public void solveSudoku(char[][] board) {
dfs(board);
}
public boolean dfs(char[][] board){
for (int i = 0; i < 9; i++){ // 遍历行
for (int j = 0; j < 9; j++){ // 遍历列
if (board[i][j] != '.'){ // 跳过原始数字
continue;
}
for (char k = '1'; k <= '9'; k++){ // (i, j) 这个位置放k是否合适
if (isValid(i, j, k, board)){
board[i][j] = k;
if (dfs(board)){ // 如果找到合适一组立刻返回
return true;
}
board[i][j] = '.';
}
}
// 9个数都试完了,都不行,那么就返回false
return false;
// 因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!
// 那么会直接返回, 「这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!」
}
}
return true;// 遍历完没有返回false,说明找到了合适棋盘位置了
}
public boolean isValid(int row, int col, char val, char[][] board){
// 同行是否重复
for (int i = 0; i < 9; i++){
if (board[row][i] == val){
return false;
}
}
// 同列是否重复
for (int j = 0; j < 9; j++){
if (board[j][col] == val){
return false;
}
}
// 9宫格里是否重复
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++){
for (int j = startCol; j < startCol + 3; j++){
if (board[i][j] == val){
return false;
}
}
}
return true;
}
}