leetcode【中等】2192、有向无环图中一个节点的所有祖先

给你一个正整数 n ,它表示一个 有向无环图 中节点的数目,节点编号为 0 到 n - 1 (包括两者)。

给你一个二维整数数组 edges ,其中 edges[i] = [fromi, toi] 表示图中一条从 fromi 到 toi 的单向边。

请你返回一个数组 answer,其中 answer[i]是第 i 个节点的所有 祖先 ,这些祖先节点 升序 排序。

如果 u 通过一系列边,能够到达 v ,那么我们称节点 u 是节点 v 的 祖先 节点。

在这里插入图片描述

示例 1:

输入:n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
输出:[[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
解释:
上图为输入所对应的图。
- 节点 012 没有任何祖先。
- 节点 32 个祖先 01- 节点 42 个祖先 02- 节点 53 个祖先 013- 节点 65 个祖先 01234- 节点 74 个祖先 0123

思路:拓扑排序\bfs

class Solution {
    public List<List<Integer>> getAncestors(int n, int[][] edges) {
        List<Integer>[] son=new ArrayList[n];//记录节点的子节点们
        Set<Integer>[] dad=new HashSet[n];//记录节点的父节点们
        Set<Integer>[] res=new TreeSet[n];//记录答案,保证有序

        for(int i=0;i<n;i++){
            son[i]=new ArrayList<>();
            dad[i]=new HashSet<>();
            res[i]=new TreeSet<>();
        }

        for(int i=0;i<edges.length;i++){
            son[edges[i][0]].add(edges[i][1]);
            dad[edges[i][1]].add(edges[i][0]);
        }

        List<Integer>que=new ArrayList<>();
        for(int i=0;i<n;i++){
            if(dad[i].size()==0) que.add(i);
        }

        while(!que.isEmpty()){
            int a=que.remove(que.size()-1);
            List<Integer>list=son[a];
            for(int i=0;i<list.size();i++){
                int b=list.get(i);
                res[b].add(a);
                res[b].addAll(res[a]);
                dad[b].remove(a);//hashset的remove是元素,不是下标
                if(dad[b].size()==0) que.add(b);
            }
        }
        List<List<Integer>> ans=new ArrayList<>();
        for(int i=0;i<n;i++) ans.add(new ArrayList<>(res[i]));
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值