给你一个正整数 n ,它表示一个 有向无环图 中节点的数目,节点编号为 0 到 n - 1 (包括两者)。
给你一个二维整数数组 edges ,其中 edges[i] = [fromi, toi] 表示图中一条从 fromi 到 toi 的单向边。
请你返回一个数组 answer,其中 answer[i]是第 i 个节点的所有 祖先 ,这些祖先节点 升序 排序。
如果 u 通过一系列边,能够到达 v ,那么我们称节点 u 是节点 v 的 祖先 节点。
示例 1:
输入:n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
输出:[[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
解释:
上图为输入所对应的图。
- 节点 0 ,1 和 2 没有任何祖先。
- 节点 3 有 2 个祖先 0 和 1 。
- 节点 4 有 2 个祖先 0 和 2 。
- 节点 5 有 3 个祖先 0 ,1 和 3 。
- 节点 6 有 5 个祖先 0 ,1 ,2 ,3 和 4 。
- 节点 7 有 4 个祖先 0 ,1 ,2 和 3 。
思路:拓扑排序\bfs
class Solution {
public List<List<Integer>> getAncestors(int n, int[][] edges) {
List<Integer>[] son=new ArrayList[n];//记录节点的子节点们
Set<Integer>[] dad=new HashSet[n];//记录节点的父节点们
Set<Integer>[] res=new TreeSet[n];//记录答案,保证有序
for(int i=0;i<n;i++){
son[i]=new ArrayList<>();
dad[i]=new HashSet<>();
res[i]=new TreeSet<>();
}
for(int i=0;i<edges.length;i++){
son[edges[i][0]].add(edges[i][1]);
dad[edges[i][1]].add(edges[i][0]);
}
List<Integer>que=new ArrayList<>();
for(int i=0;i<n;i++){
if(dad[i].size()==0) que.add(i);
}
while(!que.isEmpty()){
int a=que.remove(que.size()-1);
List<Integer>list=son[a];
for(int i=0;i<list.size();i++){
int b=list.get(i);
res[b].add(a);
res[b].addAll(res[a]);
dad[b].remove(a);//hashset的remove是元素,不是下标
if(dad[b].size()==0) que.add(b);
}
}
List<List<Integer>> ans=new ArrayList<>();
for(int i=0;i<n;i++) ans.add(new ArrayList<>(res[i]));
return ans;
}
}