事件的独立性

事件的独立性

在学习了条件概率之后,那就不得不提到事件独立性了。

我们先来看一个例子

例子1

记 A 1 : 第 一 颗 骰 子 掷 出 6 点 。 记 A 2 : 第 二 颗 骰 子 掷 出 2 点 。 \large{记A_1:第一颗骰子掷出6点。}\\ \large{记A_2:第二颗骰子掷出2点。} A1:6A22

这个事件一看就非常的独立是吧,我下一次投的骰子跟上一次怎么会有关系呢?因此在这2个事件独立的情况下,我们可以这样写 P ( A 2 ∣ A 1 ) = P ( A 2 ) P(A_2|A_1)=P(A_2) P(A2A1)=P(A2)

我们再拿出我们熟悉的条件概率公式 P ( A 2 ∣ A 1 ) = P ( A 2 A 1 ) P ( A 1 ) \displaystyle P(A_2|A_1)=\frac{P(A_2A_1)}{P(A_1)} P(A2A1)=P(A1)P(A2A1)

是不是可以写成这样呢?

P ( A 2 ∣ A 1 ) = P ( A 2 ) = P ( A 2 A 1 ) P ( A 1 ) P ( A 2 ) P ( A 1 ) = P ( A 2 A 1 ) P(A_2|A_1)=P(A_2)=\displaystyle \frac{P(A_2A_1)}{P(A_1)}\\ P(A_2)P(A_1)=P(A_2A_1) P(A2A1)=P(A2)=P(A1)P(A2A1)P(A2)P(A1)=P(A2A1)

由此得出了事件独立的定义

两个事件相互独立

A A A B B B是两个事件,如果具有等式: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)则称事件 A A A B B B相互独立。

说明:

  1. P ( B ) > 0 P(B)>0 P(B)>0 A A A B B B相互独立 P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)
  2. A A A B B B相互独立。则 A A A B ‾ \overline{B} B A ‾ \overline{A} A B B B A ‾ \overline{A} A B ‾ \overline{B} B相互独立

下面咱们还要讨论一个独立相容之间的概念。

来继续看抽牌问题来讨论

现有一副不含大、小王的扑克牌,在洗牌后随机抽取一张。

  1. “这张牌是黑桃”与“这张牌是K”是否相互独立?
  2. “这张牌是黑桃”与“这张牌是红桃”是否相互独立?

(1) 记 事 件 A : 这 张 牌 是 黑 桃 B : 这 张 牌 是 K 。 由 古 典 概 型 易 知 : P ( A ) = 1 4 P ( C ) = 1 13 P ( A B ) = 1 52 P ( A B ) = P ( A ) P ( B ) , 所 以 A 与 B 相 互 独 立 。 记事件A:这张牌是黑桃{\quad}B:这张牌是K。\\ 由古典概型易知:\\ P(A)=\displaystyle{\frac{1}{4}}{\quad}P(C)=\displaystyle{\frac{1}{13}}{\quad}P(AB)=\displaystyle{\frac{1}{52}}\\ P(AB)= P(A)P(B),所以A与B相互独立。 A:B:K:P(A)=41P(C)=131P(AB)=521P(AB)=P(A)P(B),AB

(2) 记 事 件 A : 这 张 牌 是 黑 桃 C : 这 张 牌 是 红 桃 . 由 古 典 概 型 易 知 : P ( A ) = 1 4 P ( C ) = 1 4 P ( A C ) = 0 ∴ P ( A C ) ≠ P ( A ) P ( C ) , 所 以 A 与 B 不 相 互 独 立 . 记事件A:这张牌是黑桃{\quad}C:这张牌是红桃.\\ 由古典概型易知:\\ P(A)=\displaystyle{\frac{1}{4}}{\quad}P(C)=\displaystyle{\frac{1}{4}}{\quad} P(AC)=0\\ \therefore P(AC){\neq}P(A)P(C),所以A与B不相互独立. A:C:.:P(A)=41P(C)=41P(AC)=0P(AC)=P(A)P(C)AB.

由此可得

P ( A ) P ( C ) > 0 P(A)P(C)>0 P(A)P(C)>0时,若 A , C A,C A,C不相容,则 A , C A,C A,C相互独立的。
P ( A ) P ( C ) > 0 P(A)P(C)>0 P(A)P(C)>0时,若 A , C A,C A,C相互独立,则 A , C A,C A,C不相容.

但是这2个结论非常的绕啊,我是看了好久没太明白的😥

不过现在我换个说法或许会好很多,首先相容的反义是互斥

那么不相容就是互斥,那么我们改成这样

P ( A ) P ( C ) > 0 P(A)P(C)>0 P(A)P(C)>0时,若 A , C A,C A,C互斥,则 A , C A,C A,C相互独立。
P ( A ) P ( C ) > 0 P(A)P(C)>0 P(A)P(C)>0时,若 A , C A,C A,C相互独立,则 A , C A,C A,C互斥.

这样是不是容易理解多了,最开始一堆否定词连着用属实看不懂😥😥😥

如果还是晕的话可能需要理解一下互斥相互独立这2个概念描述的是什么了。

三个事件相互独立

定义设 A , B , C A,B,C A,B,C是三个事件,如果具有等式:

  1. P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
  2. P ( B C ) = P ( B ) P ( C ) P(BC)= P(B)P(C) P(BC)=P(B)P(C)
  3. P ( A C ) = P ( A ) P ( C ) P(AC)= P(A)P(C) P(AC)=P(A)P(C)
  4. P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)

则称事件 A , B , C A,B,C A,B,C祖互独立,如果只满足1,2,3的话则称事件 A , B , C A,B,C A,B,C两两独立

若事件 A , B , C A,B,C A,B,C相互独立,则事件 A , B , C A,B,C A,B,C一定两两独立。

反之如果事件 A , B , C A,B,C A,B,C两两独立,则事件 A , B , C A,B,C A,B,C不一定相互独立。

由此我们可以得出多个事件相互独立的定义

多个事件相互独立

定义若n个事件 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An满足如下等式:

P ( A i A j ) = P ( A i ) P ( A j ) 1 ⩽ i < j < n ; P ( A i A j A k ) = P ( A i ) P ( A j ) P ( A k ) 1 ⩽ j < k ⩽ n ; . . . . . . . . . . . . . P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ) . . . P ( A n ) P(A_iA_j)= P(A_i)P(A_j){\quad}1{\leqslant}i<j<n;\\ P(A_iA_jA_k)= P(A_i)P(A_j)P(A_k){\quad}1{\leqslant}j<k{\leqslant}n;\\ .............\\ P(A_1A_2...A_n)=P(A_1)P(A_2)...P(A_n) P(AiAj)=P(Ai)P(Aj)1i<j<n;P(AiAjAk)=P(Ai)P(Aj)P(Ak)1j<kn;.............P(A1A2...An)=P(A1)P(A2)...P(An)

则称n个事件 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An相互独立

这样算是把所有的都介绍完了,那么就进入例题环节吧😋

例题1

假设每发炮弹是否命中是互不影响的,且命中概率均为0.004。若系统发射100发炮弹,求至少命中一发的概率。

一眼发现了互不影响的字样,直接多个事件相互独立搞上!!!

正向的思路当然是把至少命中一发的概率统统加上➕了是吧,但是这样会非常的繁琐和麻烦,也不好计算

而逆向的思维就非常简单了,只需要减掉100次都不命中的概率就好了。

计算起来的话非常简单,但是这个例题并不是为了让你计算,而是告诉你为什么可以这样算

1 设 A , B 相 互 独 立 . 1设A,B相互独立. 1A,B.
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ) P ( B ) P(A{\cup}B)=P(A)+P(B)-P(A)P(B) P(AB)=P(A)+P(B)P(A)P(B)

同时 A A A B B B事件可以看成全事件减去 A ‾ {\overline{A}} A B ‾ {\overline{B}} B事件,应该不难理解吧。然后根据事件独立性再展开一下

P ( A ∪ B ) = 1 − P ( A B ‾ ) = 1 − P ( A ‾ ) P ( B ‾ ) P(A{\cup}B)=1-P({\overline{AB}})=1-P({\overline{A}})P({\overline{B}}) P(AB)=1P(AB)=1P(A)P(B)
2 设 A 1 , A 2 , . . . A n 相 互 独 立 . P ( ⋃ i = 1 n A i ) = 1 − P ( A 1 ‾ A 2 ‾ … A n ‾ ) = 1 − P ( A 1 ‾ ) … P ( A n ‾ ) 2设A_1,A_2,...A_n相互独立.\\ P({\bigcup^n_{i=1}}{A_i})\\ =1-P({\overline{A_1}}{\overline{A_2}}…{\overline{A_n}})\\ =1-P({\overline{A_1}})…P({\overline{A_n}}) 2A1,A2,...An.P(i=1nAi)=1P(A1A2An)=1P(A1)P(An)

如果 P ( A i ) = p i = 1 , 2 , . . . , n P(A_i)=p{\quad}i=1,2,...,n P(Ai)=pi=1,2,...,n

则有 P ( ⋃ i = 1 n A i ) = 1 − ( 1 − p ) n P({\bigcup^n_{i=1}}{A_i})=1-(1-p)^n P(i=1nAi)=1(1p)n

这样一顿推导后我想应该很清楚了,这样的公式只有在事件相互独立的情况成立。

🆗我们回到题目来

记 A : 导 弹 被 击 中 。 A i : 第 i 发 炮 弹 击 中 导 弹 , i = 1 , 2 , … , 100 记A:导弹被击中。\\ A_i:第i发炮弹击中导弹,i=1,2,…,100 A:Ai:ii=1,2,,100

A = A 1 ∪ A 2 ∪ … A 100 A=A_1{\cup}A_2{\cup}…A_{100} A=A1A2A100相互独立,且 p = P ( A i ) = 0.004 , i = 1 , 2 , . . . , 100 p=P(A_i)=0.004,i=1,2,...,100 p=P(Ai)=0.004,i=1,2,...,100

P ( A ) = P ( A 1 ∪ . . . ∪ A 100 ) = 1 − ( 1 − p ) 100 ≈ 0.33 P(A)=P(A_1{\cup}...{\cup}A_{100})=1-(1-p)^{100}{\approx}0.33 P(A)=P(A1...A100)=1(1p)1000.33

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值