C语言求方程近似解

牛顿法求方程近似解

#include <stdio.h>
#include <math.h>
#define EPSILON 1e-6

double f(double x) {
    return 2 * pow(x, 3) - 4 * pow(x, 2) + 3 * x - 6;
}

double f_prime(double x) {
    return 6 * pow(x, 2) - 8 * x + 3;
}

double h(double x){
    return pow(x,3)-4*pow(x,2)+3*x-6;
}

double h_prime(double x){
    return 3*pow(x,2)-8*x+3;
}
double newton(double(*fp)(double),double(*fp_prime)(double)) {
    double x = 1.5;
    while (fabs(fp(x)) > EPSILON){
        x = x - fp(x) / fp_prime(x);
    }
    return x;
}

int main() {
    printf("%g\n", newton(f,f_prime));
    printf("%g\n", newton(h,h_prime));
    return 0;
}

二分法求方程近似解

二分法是一种求解方程近似根的方法。对于一个函数 f(x),使用二分法求 f(x)近似解的时候,我们先设定一个迭代区间(在这个题目上,我们之后给出了的两个初值决定的区间 [−20,20]),区间两端自变量 x 的值对应的 f(x) 值是异号的,之后我们会计算出两端 x 的中点位置 x′ 所对应的 f(x′),然后更新我们的迭代区间,确保对应的迭代区间的两端 x 的值对应的 f(x) 值还会是异号的。

重复这个过程直到我们某一次中点值 x′ 对应的 f(x′)<ϵ(题目中可以直接用EPSILON)就可以将这个 x′作为近似解返回给 main 函数了。
在这里插入图片描述上面所示的一个迭代过程的第一次的迭代区间是 [a1,b1],取中点 b2​,然后第二次的迭代区间是 [a1,b2],再取中点 a2​,然后第三次的迭代区间是 [a2,b2],然后取 a3​,然后第四次的迭代区间是 [a3,b2],再取红色中点 c,我们得到发现 f© 的值已经小于 ϵ\epsilonϵ,输出 c 作为近似解。

在这里,我们将用它实现对形如 px+q=0的一元一次方程的求解。

在这里,你完成的程序将被输入两个正整数 p 和 q(你可以认为测评机给出的 0<∣p∣≤1000 且 0<∣q∣≤1000),程序需要用二分法求出 px+q=0的近似解。
输入格式

测评机会反复运行你的程序。每次程序运行时,输入为一行,包括一组被空格分隔开的符合描述的正整数 p 和 q。你可以认为输入数据构成的方程 px+q=0 都是有解且解在 [−20,20] 的区间内。
输出格式

输出为一行,包括一个数字。为方程 px+q=0 的近似解。请使用四舍五入的方式保留小数点后 4 位小数。

#include <stdio.h>
#include <math.h>
#define EPSILON 1e-7

double bisection(int p, int q, double (*func)(int, int, double));
double f(int p, int q, double x);
int main() {
    int p;
    int q;
    scanf("%d%d", &p, &q);
    printf("%.4f\n", bisection(p, q, f));
    return 0;
}

double bisection(int p, int q, double (*func)(int, int, double)) {
    double a = -20.0;
    double b = 20.0;
    
    while(1){
    double m = (a+b)/2;
    double y = func(p,q,m);
        if(fabs(y)<EPSILON)
        return m;
    double y1 = func(p,q,a);
    double y2 = func(p,q,b);
    if(y1*y<0) b=m;
    if(y2*y<0) a=m;
       
    }
        
}

double f(int p, int q, double x) {
    return p * x + q;
}
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
对于线性方程组 Ax=b,雅可比迭代法的迭代公式为: x_i^(k+1) = (b_i - Σ(A_ij * x_j^(k)))/A_ii (i=1,2,...,n) 其中,x_i^(k+1) 表示第 i 个未知量在第 k+1 次迭代后的近似,x_j^(k) 表示第 j 个未知量在第 k 次迭代时的近似,A_ij 和 b_i 分别表示系数矩阵和常数向量的元素。 C 语言代码如下: ```c #include <stdio.h> #define N 3 // 系数矩阵的阶数 int main() { float A[N][N] = {{2, -1, 0}, {-1, 2, -1}, {0, -1, 2}}; // 系数矩阵 float b[N] = {1, 0, 1}; // 常数向量 float x[N] = {0}; // 初值设为 0 float x_new[N]; // 存放每次迭代后的近似 float eps = 1e-6; // 精度要 int max_iter = 100; // 最大迭代次数 int iter = 0; // 当前迭代次数 float sum; // 用于计算 Σ(A_ij * x_j^(k)) while (iter < max_iter) { for (int i = 0; i < N; i++) { sum = 0; for (int j = 0; j < N; j++) { if (j != i) { sum += A[i][j] * x[j]; } } x_new[i] = (b[i] - sum) / A[i][i]; } int flag = 1; // 标记是否满足精度要 for (int i = 0; i < N; i++) { if (fabs(x_new[i] - x[i]) > eps) { flag = 0; break; } } if (flag) { printf("迭代次数:%d\n", iter); for (int i = 0; i < N; i++) { printf("x%d = %.6f\n", i+1, x_new[i]); } return 0; } for (int i = 0; i < N; i++) { x[i] = x_new[i]; // 更新近似 } iter++; } printf("迭代次数超过最大迭代次数,无法达到精度要!\n"); return 0; } ``` 其中,fabs() 函数用于计算绝对值,精度要 eps 和最大迭代次数 max_iter 可以根据需要进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yitahutu79

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值