MapReduce编程案例(三)

MapReduce编程案例(三)

  • 键值对如何传入自定义对象类型

    1. 实现WritableComparable接口
    2. 实现Writable接口
  • 二者的区别

    1. 如果对象类型作为key传入,MapReduce底层会对键进行排序,此时需要告诉MapReduce需要进行排序的是什么
    2. 如果对象类型作为value传入,则只需实现Wriable接口

    案例: 求上下行流量

1363157985066 	13726230503	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157995052 	13826544101	5C-0E-8B-C7-F1-E0:CMCC	120.197.40.4			4	0	264	0	200
1363157991076 	13926435656	20-10-7A-28-CC-0A:CMCC	120.196.100.99			2	4	132	1512	200
1363154400022 	13926251106	5C-0E-8B-8B-B1-50:CMCC	120.197.40.4			4	0	240	0	200
1363157993044 	18211575961	94-71-AC-CD-E6-18:CMCC-EASY	120.196.100.99	iface.qiyi.com	视频网站	15	12	1527	2106	200
1363157995074 	84138413	5C-0E-8B-8C-E8-20:7DaysInn	120.197.40.4	122.72.52.12		20	16	4116	1432	200
1363157993055 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
1363157995033 	15920133257	5C-0E-8B-C7-BA-20:CMCC	120.197.40.4	sug.so.360.cn	信息安全	20	20	3156	2936	200
1363157983019 	13719199419	68-A1-B7-03-07-B1:CMCC-EASY	120.196.100.82			4	0	240	0	200
1363157984041 	13660577991	5C-0E-8B-92-5C-20:CMCC-EASY	120.197.40.4	s19.cnzz.com	站点统计	24	9	6960	690	200
1363157973098 	15013685858	5C-0E-8B-C7-F7-90:CMCC	120.197.40.4	rank.ie.sogou.com	搜索引擎	28	27	3659	3538	200
1363157986029 	15989002119	E8-99-C4-4E-93-E0:CMCC-EASY	120.196.100.99	www.umeng.com	站点统计	3	3	1938	180	200
1363157992093 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			15	9	918	4938	200
1363157986041 	13480253104	5C-0E-8B-C7-FC-80:CMCC-EASY	120.197.40.4			3	3	180	180	200
1363157984040 	13602846565	5C-0E-8B-8B-B6-00:CMCC	120.197.40.4	2052.flash2-http.qq.com	综合门户	15	12	1938	2910	200
1363157995093 	13922314466	00-FD-07-A2-EC-BA:CMCC	120.196.100.82	img.qfc.cn		12	12	3008	3720	200
1363157982040 	13502468823	5C-0A-5B-6A-0B-D4:CMCC-EASY	120.196.100.99	y0.ifengimg.com	综合门户	57	102	7335	110349	200
1363157986072 	18320173382	84-25-DB-4F-10-1A:CMCC-EASY	120.196.100.99	input.shouji.sogou.com	搜索引擎	21	18	9531	2412	200
1363157990043 	13925057413	00-1F-64-E1-E6-9A:CMCC	120.196.100.55	t3.baidu.com	搜索引擎	69	63	11058	48243	200
1363157988072 	13760778710	00-FD-07-A4-7B-08:CMCC	120.196.100.82			2	2	120	120	200
1363157985066 	13726238888	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157993055 	13560436666	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
1 编写JavaBean
package TopN;


import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

/**
 * 本案例的功能:演示自定义数据类型如何实现hadoop的序列化接口
 * 1、该类一定要保留空参构造函数
 * 2、write方法中输出字段二进制数据的顺序  要与  readFields方法读取数据的顺序一致
 *
 * @author ThinkPad
 *
 */
public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow;
    private long dFlow;
    private String phone;
    private long amountFlow;

    public FlowBean() {
    }

    public FlowBean(long upFlow, long dFlow) {
        this.upFlow = upFlow;
        this.dFlow = dFlow;
        this.amountFlow = upFlow   dFlow;
    }

    public String getPhone() {
        return phone;
    }

    public void setPhone(String phone) {
        this.phone = phone;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(int upFlow) {
        this.upFlow = upFlow;
    }

    public long getdFlow() {
        return dFlow;
    }

    public void setdFlow(int dFlow) {
        this.dFlow = dFlow;
    }

    public long getAmountFlow() {
        return amountFlow;
    }

    public void setAmountFlow(int amountFlow) {
        this.amountFlow = amountFlow;
    }

    /**
     * hadoop系统在序列化该类的对象时要调用的方法
     */
    @Override
    public void write(DataOutput out) throws IOException {

        out.writeLong(upFlow);
        //out.writeUTF(phone);
        out.writeLong(dFlow);
        out.writeLong(amountFlow);

    }

    /**
   * hadoop系统在反序列化该类的对象时要调用的方法
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        //this.phone = in.readUTF();
        this.dFlow = in.readLong();
        this.amountFlow = in.readLong();
    }

    @Override
    public String toString() {

        return this.upFlow  ","  this.dFlow  ","   this.amountFlow;
    }

    @Override
    public int compareTo(FlowBean o) {
        return this.getAmountFlow()>o.getAmountFlow()?1:0;
    }
}

2 编写Mapper类
package TopN;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class TopNMapper extends Mapper <LongWritable, Text, Text,FlowBean >{


    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        String line = value.toString();
        String[] fields = line.split("\t");

        String phone = fields[1];

        long upFlow = Long.parseLong(fields[fields.length-3]);
        long dFlow = Long.parseLong(fields[fields.length-2]);

        context.write(new Text(phone), new FlowBean(upFlow,dFlow));
    }
}

3 编写Reducer类
package TopN;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class TopNReduce extends Reducer <Text, FlowBean, Text, FlowBean>{

    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {


        long upSum = 0;
        long dSum = 0;

        for(FlowBean value:values){
            upSum  = value.getUpFlow();
            dSum  = value.getdFlow();
        }


        context.write(key, new FlowBean(upSum, dSum));
    }
}

4 编写Job(主函数) yarn集群中运行
package TopN;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.net.URI;

public class TopNFlow {

    public static void main(String[] args) throws Exception {

        //设置系统环境变量
        System.setProperty("HADOOP_USER_NAME","root");

        Configuration conf = new Configuration();
        conf.set("mapreduce.framework.name","yarn");
        conf.set("yarn.resourcemanager.hostname","master");
        conf.set("fs.defaultFS","hdfs://master:9000");


        //添加跨平台参数
        conf.set("mapreduce.app-submission.cross-platform","true");
        Job job = Job.getInstance(conf);

        job.setJar("E:\\Hadoop\\HDFSDemo\\target\\HDFSDemo-1.0-SNAPSHOT.jar");
        job.setMapperClass(TopNMapper.class);
        job.setReducerClass(TopNReduce.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
      job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"),conf,"root");

        Path output = new Path("/TopN/output");
        if(fs.exists(output)){
            fs.delete(output,true);
        }
        //设置输入输出路径
        FileInputFormat.setInputPaths(job,new Path("/TopN/input"));
        FileOutputFormat.setOutputPath(job,output);

        //提交任务
        boolean b = job.waitForCompletion(true);
        if (b){
            System.out.println("任务完成!");
        }else {
            System.out.println("任务失败!");
        }

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值