A. Splits

Let's define a split of n as a nonincreasing sequence of positive integers, the sum of which is n.
For example, the following sequences are splits of 8: [4, 4], [3, 3, 2], [2, 2, 1, 1, 1, 1], [5, 2, 1].
The following sequences aren't splits of 8: [1, 7], [5, 4], [11,  - 3], [1, 1, 4, 1, 1].
The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split [1, 1, 1, 1, 1] is 5, the weight of the split [5, 5, 3, 3, 3] is 2 and the weight of the split [9] equals 1.
For a given n, find out the number of different weights of its splits.
Input
The first line contains one integer n (1≤n≤10^9).
Output

Output one integer — the answer to the problem.

Examples
input
Copy
7
output
Copy
4
input
Copy
8
output
Copy
5
input
Copy
9
output
Copy
5
Note

In the first sample, there are following possible weights of splits of 77:

Weight 1: [77]

Weight 2: [3333, 1]

Weight 3: [222222, 1]

Weight 7: [11111111111111]

附带翻译:

让我们定义一个n的正整数序列,其总和为n。
例如,以下序列是8的分割:[4,4],[3,3,2],[2,2,1,1,1,1],[5,2,1]。
以下序列不是8的分割:[1,7],[5,4],[11,-3],[1,1,4,1,1]。
分割的权重是分割中等于第一个元素的元素的数量。 例如,split [1,1,1,1,1]的权重为5,split [5,5,3,3,3]的权重为2,split [9]的权重等于1。
对于给定的n,找出其分裂的不同权重的数量。
输入
第一行包含一个整数n(1≤n≤10^ 9)。
产量

输出一个整数 - 问题的答案。

完全是找规律题:1——1;

                           2——2;

                           3——2;

                           4——3;

                           5——3;

#include<iostream>
using namespace std;
int main()
{
    int n;
    cin>>n;
    cout<<n/2+1<<endl;
    return 0;
}

发布了18 篇原创文章 · 获赞 14 · 访问量 1995
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览