基本介绍:
- 归并排序(MERGE-SORT)是利用归并的思想事项的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案“修补”在一起,即分而治之)。
基本思想:
- 可以看到这种结构很想一颗完全二叉树,本文的归并排序我们采用递归去实现(也可以采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程。
- 以最后一次治为例,需要将两个已经有序的子序列合并成一个有序的序列,将{2,5,7,9,}和{1,3,4,6}合并,最终序列为{1,2,3,4,5,6,7,9},示意图如下:
代码示例:
/**
* 归并算法:时间复杂度 O(n log n)
*
* @param array 需要排序的数据
* @param left 左边起始位置
* @param right 右侧起始位置
* @param temp 中间数组,归并排序需要借助中间数组
*/
private static void mergeSort(int[] array, int left, int right, int[] temp) {
/*依次对数组的元素进行拆分,直到每个组内只有一个元素为止*/
/*根据栈规则,最后分解的,最先合并*/
if (left < right) {
/*中间值*/
int mid = (left + right) / 2;
/*向左递归进行分解*/
mergeSort(array, left, mid, temp);
/*向右递归进行分解*/
mergeSort(array, mid + 1, right, temp);
/*每分解一次,就对数据合并一次*/
merge(array, left, mid, right, temp);
}
}
/**
* @param array 原始数组
* @param left 左边有序序列的初始索引
* @param right 右边索引
* @param temp 中转数组
* @param mid 中间变量
*/
private static void merge(int[] array, int left, int mid, int right, int[] temp) {
/*初始化左侧有序索引*/
int startLeft = left;
/*初始化右侧有序索引*/
int startRight = mid + 1;
/*用于记录中间数据的索引移动情况,起始索引为0*/
int index = 0;
/*依次扫描左侧、右侧有序数列,直到左侧序列或右侧序列数据循环完毕*/
while (startLeft <= mid && startRight <= right) {
/*如果左侧序列内的元素小于右侧序列的元素,则将左侧序列元素加入中间数组,
* 赋值完毕后,将左侧索引、中间序列索引下移*/
if (array[startLeft] <= array[startRight]) {
temp[index++] = array[startLeft++];
} else {
/*反之,将右侧序列元素加入到中间数组中,
* 赋值完毕后,将右侧索引、中间序列索引下移*/
temp[index++] = array[startRight++];
}
}
/*如果左侧有序数列未扫描完毕,将剩余元素依次添加到中间数组中
* 赋值完毕后,将左侧索引、中间序列索引下移*/
while (startLeft <= mid) {
temp[index++] = array[startLeft++];
}
/*如果右侧有序数列未扫描完毕,将剩余元素依次添加到中间数组中
* 赋值完毕后,将右侧索引、中间序列索引下移*/
while (startRight <= right) {
temp[index++] = array[startRight++];
}
index = 0;
/*中间索引,用以将中间序列的元素拷贝至数组
* 并不是每次都拷贝所有,每次只需对数据左边起始索引至右边的索引进行赋值即可*/
int tempLeft = left;
while (tempLeft <= right) {
array[tempLeft++] = temp[index++];
}
}