Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},
用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。 本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式:
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式:
输出用这些数构造Huffman树的总费用。
输入样例:
5
5 3 8 2 9
输出样例:
59
代码1:
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] a=new int[n+1];
int costs=0;
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
}
for(int j=0;j<a.length-1;j++)
{
Arrays.sort(a);
a[j+1]=a[j]+a[j+1];
costs+=a[j+1];
}
System.out.println(costs);
}
}
int[] array=new int[]{3,2,6,1};
Arrays.sort(array);//对 array 进行由小到大排序 System.out.println(Arrays.toString(array));// 1,2,3,6(数字排序) String[] array1=new String[]{"a","A","g"}; Arrays.sort(array1); System.out.println(Arrays.toString(array1));// A,a,g(字符串排序 先大写后小写) Arrays.sort(array1,String.CASE_INSENSITIVE_ORDER); (字符串字母表排序 忽略大小写) Arrays.sort(array1,Collections.reverseOrder());(反向排序)
代码2:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Scanner;
public class Main{
static List<Integer> a;
static int sum = 0;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
a = new ArrayList<Integer>();
int n = sc.nextInt();
for (int i = 0; i < n; i++) {
a.add(sc.nextInt());
}
Collections.sort(a);
System.out.println(sum(a));
}
public static int sum(List<Integer> list) {
if (list.size() < 2) {
return sum + list.get(0);
}
int temp = list.get(0) + list.get(1);
sum += temp;
list.remove(0);
list.remove(0);
list.add(temp);
Collections.sort(a);
sum(a);
return sum;
}
}