CycleGAN的代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
这篇文章是做什么的:MR模态合成CT模态
是否需要数据配准:不需要
是基于2D还是3D: sagittal 2D image slices(矢状二维图像切片)
目录
---文章的motivation---
单独获取MRI或者CT图像具有耗时、昂贵、给患者带来负担的局限性。所以提出了合成的方法。当前MR到CT合成的深度学习方法依赖于同一患者的成对对齐的MR和CT训练图像。但是,成对图像之间的不对齐可能导致合成错误的CT图像,另外,获取成对数据具有一定的代价。为了解决这个问题,这篇文章提出训练一个具有不成对MR和CT图像的生成性对抗网络(GAN)。用循环一致性损失训练由两个合成卷积神经网络(CNN)和两个鉴别器CNN组成的GAN,将2D脑MR图像切片转换为2D脑CT图像切片,反之亦然。
---方法发展过程---
先前提出的方法使用卷积神经网络(CNN)在大脑[4]和骨盆区域(pelvic area)[8]进行CT合成。CNN通过最小化与输入MR图像严格对齐的参考CT体积的体素损失来训练。但是,MR和CT图像的轻微体素错位可能导致合成模糊图像。
为了解决这个问题,Nie等人[9]提出在生成性对抗网络(GAN)[3]中结合体素损失(voxel-wise loss)和图像对抗损失。
尽管Nie等人[9]的GAN方法通过结合图像对抗损失解决了图像不对齐问题,但它仍然包含体素损失,所以需要成对MR和CT的训练集。在实际应用中,这样的训练集可能很难获得。此外,鉴于训练数据的稀缺性(scarcity),利用来自出于不同目的进行扫描的患者的额外MR或CT训练volumes可可以增加数据量。使用未配对的MR和CT训练数据将放宽当前基于深度学习的CT合成的许多要求(图1)。

本文介绍了一种利用生成对抗网络CycleGAN在医学图像处理中的创新应用,通过非配对MRI和CT数据,解决图像对齐问题,实现脑部图像的跨模态合成。方法通过结合循环一致性损失,生成高质量的CT图像,同时避免了对齐误差。实验结果表明,这种方法在减少对配对数据依赖的同时,提高了合成图像的质量。
最低0.47元/天 解锁文章
4593

被折叠的 条评论
为什么被折叠?



