2021-8-14-Deep MR to CT Synthesis using Unpaired Data(MICCAI Workshop 2017)-有代码

本文介绍了一种利用生成对抗网络CycleGAN在医学图像处理中的创新应用,通过非配对MRI和CT数据,解决图像对齐问题,实现脑部图像的跨模态合成。方法通过结合循环一致性损失,生成高质量的CT图像,同时避免了对齐误差。实验结果表明,这种方法在减少对配对数据依赖的同时,提高了合成图像的质量。

CycleGAN的代码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

这篇文章是做什么的:MR模态合成CT模态

是否需要数据配准:不需要

是基于2D还是3D: sagittal 2D image slices(矢状二维图像切片)

目录

---文章的motivation---

---方法发展过程---

---数据描述----

---方法---

--- 评价指标---

---实验和结果---

---结论---


---文章的motivation---

单独获取MRI或者CT图像具有耗时、昂贵、给患者带来负担的局限性。所以提出了合成的方法。当前MR到CT合成的深度学习方法依赖于同一患者的成对对齐的MR和CT训练图像。但是,成对图像之间的不对齐可能导致合成错误的CT图像,另外,获取成对数据具有一定的代价。为了解决这个问题,这篇文章提出训练一个具有不成对MR和CT图像的生成性对抗网络(GAN)。用循环一致性损失训练由两个合成卷积神经网络(CNN)和两个鉴别器CNN组成的GAN,将2D脑MR图像切片转换为2D脑CT图像切片,反之亦然。

---方法发展过程---

先前提出的方法使用卷积神经网络(CNN)在大脑[4]和骨盆区域(pelvic area)[8]进行CT合成。CNN通过最小化与输入MR图像严格对齐的参考CT体积的体素损失来训练。但是,MR和CT图像的轻微体素错位可能导致合成模糊图像。

为了解决这个问题,Nie等人[9]提出在生成性对抗网络(GAN)[3]中结合体素损失(voxel-wise loss)和图像对抗损失。

尽管Nie等人[9]的GAN方法通过结合图像对抗损失解决了图像不对齐问题,但它仍然包含体素损失,所以需要成对MR和CT的训练集。在实际应用中,这样的训练集可能很难获得。此外,鉴于训练数据的稀缺性(scarcity),利用来自出于不同目的进行扫描的患者的额外MR或CT训练volumes可可以增加数据量。使用未配对的MR和CT训练数据将放宽当前基于深度学习的CT合成的许多要求(图1)。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值