自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 收藏
  • 关注

原创 关于架空输电线识别树障or测距相关论文阅读

ok,但又不是很ok,ok的点在于摄像头安置在杆塔的固定位置,监测杆塔之间的输电线和树木,理论上是相对可行的,且能够根据图象测得输电线与树木的距离(实际测的是杆塔顶部和树木顶部的一个绝对距离)。不ok的点在于摄像头的位置是固定的,我所摄像的场景是摄像头架设在无人机或者输电线上来去测量输电线距离树木的距离;其次论文里所提出的模型训练的数据集太少,且识别的目标并不是很精细,我所希望的是识别出具体的输电线,杆塔以及树木。

2025-10-22 10:32:58 764

原创 react native 1

中文网站学习react native的优势:学习成本低,只要掌握JS和React即可;开发成本低,可以生成Android和ios上的app。react native入门到实战为什么选择React-native。

2025-10-21 15:27:06 305

原创 高压输电线背景下无人机检测输电线和周围树木以及计算两者之间的距离

电网项目需求的一小部分,在输电线巡检的过程中,需要判断输电线与周围树木的距离,如果有树木距离过近的话,为了输电线的安全,需要将最近的树木砍掉一部分。具体要求就是通过无人机沿着输电线路,在输电线下,通过无人机上的双目摄像头来判断输电线与树木的距离。首先是输电线和树木的检测识别或者是分割,其次是通过双目摄像头计算距离。客户要求:有数据集,但是未标注,且没有注明数据集有多少。先下个结论,这个项目基本上做不出来的,不知道哪一个sb一拍脑袋就接了这个需求。参考文章:OpenCV 双目摄像头标定+测距教程

2025-10-21 14:01:11 523

原创 YOLOV11:无人机雄穗监测

无人机玉米雄穗检测数据集【高质量数据集,未经过数据增强】【图片分辨率为2736 x 1824】基本信息:该数据集包含 758 张图像。标注信息:数据集中的玉米雄穗采用 YOLOv11 格式进行标注。【大疆无人机采集】

2025-10-17 17:55:57 231

原创 SAM 2 跟踪流程与原理解读

SAM 2 的跟踪能力本质是 “基于记忆的时序关联 + 交互式提示优化”:通过记忆银行存储历史目标信息,利用记忆注意力建立跨帧关联,结合用户提示实现跟踪初始化与漂移修正,最终在流式架构下实现实时、低交互的视频目标分割。其核心创新在于将静态分割模型扩展为 “时序感知” 系统,同时保持了 SAM 原有的泛化性与易用性,为视频分割的工业化应用(如 AR 实时标注、智能视频编辑)提供了基础。

2025-10-14 14:56:11 763

原创 python VSCode中报错 E501:line too long (81 > 79 characters)

打开VS Code的设置,搜索Python/Linting,找到Python配置部分,然后选择“Linting: Flake8 Args”设置。上面的22个错误几乎都是代码格式的错误,格式化文档即可。首先将最大的每行字数的警告限制为120。当前行超出了默认的单行字符配置。更改Linting选项,

2025-10-05 02:20:46 821

原创 pyinstaller实现将python程序打包成EXE的执行文件【最实用】

PyInstaller 是一个流行的 Python 打包工具,它能够将 Python 应用程序及其所有依赖项打包成单个可执行文件,支持 Windows、Linux 和 macOS 等多个平台。PyInstaller 的主要优势在于它的简单易用和跨平台特性,使得开发者可以轻松地将 Python 项目分发给最终用户,而无需让他们安装 Python 解释器或任何依赖库。

2025-10-04 00:38:35 1245

转载 优化 Jetson Orin 上的多个 Realsense 摄像头流媒体

当我第一次尝试在 Jetson Orin 上从多个英特尔 Realsense 摄像头传输视频时,我低估了事情会变得多么复杂。看似简单的任务,只需插入摄像头并开始读取帧,就变成了对 Python 的深入研究multiprocessing,包括内存管理、库的怪癖pyrealsense2,甚至修补 Python 错误。在这篇文章中,我将向您介绍如何在 Jetson Orin 上实现多达六台 Realsense 摄像头的实时流媒体传输。

2025-09-26 16:22:22 66

原创 Android Studio 导入 opencv

即使能导入,也使用不了,就没有对应的java代码,很奇怪,网上搜索查看相关的导入基本上都是下载包到本地,本地导入opencv包的,故得出结论:android 不能通过implementation添加opencv。解决方法:进入opencv下的build.gradle文件中,将开头的一行apply plugin: 'kotlin-android’注释掉即可。下载过程很简单,勾选要配置的环境,然后同意协议,然后下一步下一步,ok就行。这种方法导入的opencv没有对应的java代码,古不能。

2025-09-24 14:37:36 380

原创 Android Studio C盘目录下的.gradle 文件夹迁移到F盘

在 Android Studio 项目中,.gradle 文件夹是 Gradle 构建工具的核心工作目录,主要存储与项目构建相关的配置、缓存、依赖文件和临时数据,目的是优化构建效率、记录构建状态。程序并不会将C盘的gradle文件全部移动到你新设置的目录下。目前来说,是没有指定项目的缓存清理的但是我们可以清理全部缓存。然后将原目录下的.gradle文件夹整个拷贝到新目录下。老路径下的.gradle文件夹我们就可以放心的删除了。将上面的默认地址,改为其他盘符的指定目录下。对于系统来说,C盘的空间是宝贵的。

2025-09-24 11:29:25 478

原创 docker 部署 code-server

众所周知,开发环境的搭建非常耗费时间,而且还要关注到项目对引用及依赖的库文件的版本问题。尤其是对于一些已经交付的项目的二次开发,开发人员要么配置之前的开发环境,要么把相关包文件升级到最新版本并且发布到生产环境。目的:熟练使用docker进行code-server的部署,能通过网页打开vscode界面进行编程,并能够提供给多用户使用。code-server是一款服务端的vscode,可以在浏览器中使用vscode。该问题为网络原因 连接不通。重启解决大多数问题。

2025-09-11 13:55:34 768

原创 Griffin|增强现实数据集|无人机数据集

在自动驾驶技术的发展中,尽管取得了显著进展,但目前的单视角系统在复杂环境中仍然面临着严重遮挡和视野受限的基本挑战。为了解决这些限制,越来越多的协作感知策略涌现出来,包括车对车(V2V)和车对基础设施(V2I)的合作。这些方法已经展示了可行的解决方案和在感知能力上的显著提升。然而,它们的实际实施通常需要大量的基础设施投资和联网车辆的广泛采用,这可能会带来经济障碍。相比之下,车对无人机或所谓的空中-地面协作(AGC)系统利用了空中的全景视图和地面级别的详细观察。

2025-09-08 17:58:11 1477

原创 bash:trtexec:command not found

环境变量未配置:若 TensorRT 已安装,但 trtexec 所在路径未添加到系统的 PATH 环境变量中,系统就无法找到该命令。trtexec 一般位于 TensorRT 安装目录的 bin 文件夹下(例如 /usr/src/tensorrt/bin)。若要永久生效,可将该命令添加到 ~/.bashrc 或 ~/.zshrc(根据使用的 shell)文件中,然后执行。下面忽略即可,只是为了检验tensorrt的位置是否在/usr/src/tensorrt。

2025-09-08 16:16:27 367

原创 Grounded-Segment-Anything 环境配置

创建环境等跳过安装torch等验证这里如果运行不成功的话可以命令行挨个指令再走一遍1下载地址暂时跳过,我总觉得这个好像不是必选的。

2025-09-07 16:03:27 352

原创 yolov11-obb 旋转框 标注 训练 全流程

定向目标检测器的输出是一组旋转的边界框,这些边界框精确地包围了图像中的目标,以及每个框的类别标签和置信度分数。当目标以各种角度出现时,定向边界框特别有用,例如在航空图像中,传统的轴对齐边界框可能包含不必要的背景。实际需求中可能要求会更为严格,不单单是要知道物体的位置,还要知道物体的相对精确的位置,这样贴身的旋转框就适应更广泛的场景和需求。旋转角度[Z][X][C][V]保存 [Crtl+S]旋转框的选择 [E]

2025-09-02 11:01:02 533

原创 Eclipse使用教程_自用

输入fonts,快速定位到字体的设置,点击Edit,这里主要是可以编辑字体的大小。右键项目>Delete>一般不勾选(勾选的话会把项目从硬盘上彻底删除)F5 单步执行,但会进入方法,包括自定义方法和jdk源码的方法。F7 跳出当前正在Debug的方法,但不能跳出main方法。F8 执行到下一个断点,如果没有断点,则程序执行完毕。F6 单步执行,遇到方法会将方法当做一条语句执行。依旧是Window->Preferences。右键package->New>Class。右键src->New>Package。

2025-09-01 14:35:58 457

原创 读取App的CPU GPU等信息

精美的报告:精美而详细的报告分析,无论您身在何处或何时,都可以存储、可视化、编辑、管理和下载使用 SoloX 收集的所有测试用例。数据完整性:我们提供有关 CPU、GPU、内存、电池、网络、FPS、Jank 等的数据,您可以轻松获取。使用Python/API收集:支持Python和API收集性能数据,帮助用户轻松融入自动化测试流程。实用的监控设置:支持在监控过程中在其他PC机上设置报警值、采集时长、访问移动设备等。🌱2-apps:在两部具有相同配置的手机上测试两个不同的应用程序。

2025-08-28 11:56:56 310

原创 使用yolov11+ISAT实现全自动的图像分割标注

一般我们拿到的数据集或者通过标注较为容易得到的数据集都是检测框的数据集,不是分割的数据集,所以需要进一步处理。在这里我们会实现通过部分数据集去标注全部数据集,且是分割的标注。下面的脚本就是用已经训练好的模型去得到yolo格式的标签文件。首先使用已有的数据集训练得到能用的yolo检测模型;

2025-08-27 11:39:12 453

原创 基于YOLOv11训练无人机视角Visdrone2019数据集

VisDrone 数据集 是由中国天津大学机器学习和数据挖掘实验室 AISKYEYE 团队创建的大规模基准。它包含用于与无人机图像和视频分析相关的各种计算机视觉任务的,经过仔细标注的真实数据。VisDrone 由 288 个视频片段(包含 261,908 帧)和 10,209 张静态图像组成,这些数据由各种无人机载摄像头拍摄。该数据集涵盖了广泛的方面,包括地点(中国 14 个不同的城市)、环境(城市和乡村)、物体(行人、车辆、自行车等)和密度(稀疏和拥挤的场景)。

2025-08-26 14:48:15 1364

原创 【开源项目分享】Excalidraw:一款轻量、高效、极具手感的在线白板工具

github 项目地址开源虚拟手绘白板。支持协作,端到端加密。💯 免费且开源。🎨 无限的、基于画布的白板。✍️手绘风格。🌓 黑暗模式。🏗️可定制。📷 图像支持。😀 形状库支持。🌐 本地化(i18n)支持。🖼️ 导出为 PNG、SVG 和剪贴板。💾 开放格式 - 将图纸导出为.excalidrawjson 文件。⚒️ 多种工具 - 矩形、圆形、菱形、箭头、线条、自由绘制、橡皮擦…➡️ 箭头绑定和标记箭头。🔙 撤消/重做。🔍 支持缩放和平移。

2025-08-25 11:58:03 684

原创 【开源项目分享】文件加密工具:PicoCrypt

Picocrypt是一款非常小巧(因此得名Pico)、非常简单却非常安全的加密工具,您可以用它来保护您的文件。它的设计目标是成为首选的加密工具,专注于安全性、简单性和可靠性。Picocrypt使用安全的XChaCha20密码和Argon2id密钥派生函数,提供高水平的安全性,即使对抗像NSA这样的三字母机构。您的隐私和安全受到威胁。通过使用Picocrypt保护您的文件,重新掌控您的安全。

2025-08-22 17:25:37 1045

原创 No module named blake2b

安装。

2025-08-22 16:48:14 284

原创 AI大环境下,低端程序员你的出路在哪

现在是最好的时代,没有AI的话我都不知道怎么编程,现在只需要把你的想法告诉大模型,他写出来的代码比我自己写又快又好,只需要在AI代码上做进一步的测试和优化即可,AI可以说在很大程度上加速了写代码这个过程,写代码其实就是把想法转换成机器能够理解的语言。在AI的基础上,擅用AI,然后在此基础上学习更多更深入的知识,对技术有自己的理解。有的创业,有的去国外打工(现在国外打工也不是好路子),有的早早转行,有的从事售前,销售等相关职业,有的润到外企,国企,继续从事相关工作,有的做一些小本生意。

2025-08-15 16:32:08 1015

原创 【数据集介绍】多种飞机检测的YOLO数据集介绍

该数据集专为军用飞机的物体检测而设计,涵盖 88 种不同的军用飞机类型。某些机型与其变体合并为一类,因为它们的机身或外部特征仅略有不同,因此难以区分——尤其是在只有部分飞机可见的情况下。![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/3804f5dacb7245d18c027af346860d60.png#pic_center = 700x)!

2025-08-14 20:04:31 549

原创 hexo + github 搭建个人博客

进入 [C:\Users\用户名.ssh] 目录(要勾选显示“隐藏的项目”),用记事本打开公钥 id_rsa.pub 文件并复制里面的内容。登陆 GitHub ,进入 Settings 页面,选择左边栏的 SSH and GPG keys,点击 New SSH key。Title 随便取个名字,粘贴复制的 id_rsa.pub 内容到 Key 中,点击 Add SSH key 完成添加。输入 ssh-keygen -t rsa -C “GitHub 邮箱”,然后一路回车。跳过github邮箱注册。

2025-08-13 11:20:41 348

原创 yolov11 标注 部署 训练 全流程

这是一个 YOLO 数据集格式的示例,其中单张图像包含两个对象,分别由一个 3 点分割和一个 5 点分割组成。数据标注,对于目标检测的数据标注一般用labelimg,对于图像分割的数据集的标注我一般用ISAT。可以自己去添加标签,然后点击SAM2加载模型,利用SAM2进行相对自动的标注,效率提高。ISAT有他自己的格式转换器,也可以自己写一个脚本进行格式转换。只针对目标检测的数据集,不针对图像分割的数据集。数据采集最好用实际用到的摄像头采集的数据。yolov11 分割标签的格式是。

2025-08-12 10:02:30 767

原创 机器学习:基于OpenCV和Python的智能图像处理 实战

HSV色彩空间:HSV是从心理学角度提出的,它包括色调、饱和度和亮度三要素。其中,色调是指光的颜色,与混合光谱的主要光波长有关;饱和度是指颜色深浅程度或相对纯净度;亮度反映的是人眼感受到的光的明暗程度。YCrCb:Y代表亮度,Cr和Cb保存色度信息,其中Cr表示红色分量信息,Cb表示蓝色分量信息。平常大家看到的lena.png是这样的。图像通道的拆分和合并 RGB。示例图像 lena.png。逻辑运算:与或非、异或。

2025-08-11 15:24:28 523

原创 基于强化学习的目标跟踪 研究初探

视觉目标跟踪是计算机视觉中的一大难题,需在连续视频帧中通过边界框持续识别和定位目标对象,面临遮挡、光线变化、快速运动和运动模糊等挑战,且诸多实际应用要求实时且准确的预测。基于图像的视觉伺服控制虽无需依赖目标精确模型且鲁棒性较强,但面临复杂目标形状、非合作目标运动状态的影响,存在图像特征交互矩阵难获精确解析形式、控制系统收敛范围有限、视场限制等问题。A3CTD在跟踪阶段利用学习到的状态价值函数评估自身和专家跟踪器的性能,据此选择输出自身或专家的边界框。,能有效提升跟踪效率和训练稳定性,减少计算资源需求。

2025-08-11 10:47:21 1169

原创 google浏览器 占用内存过多导致电脑卡住

cn.bing.com 搜索界面占用内存飙升,导致电脑内存满了就卡住了。

2025-08-06 17:52:15 263

原创 关于SAM官网demo效果远远优于本地部署效果的原因探究

左边是本地模型的效果,右边是官网demo的效果,可以看出官网的效果明显优于本地demo的效果,本地demo会有比较多的细碎的掩码产生。在github仓库有很多关于这类问题的讨论,结果要不就是官网有更好的模型,要不就是使用了其他的后处理方法。要不就是官方没有提供最好的模型,要不就是使用了其他的处理方法,单纯调参并不能调出跟官网一样的效果来的。官方的效果就是优于他给你提供的模型本地部署的效果。

2025-08-06 16:21:15 2111

原创 F12 开发者工具 使用指北

首先介绍Chrome开发者工具中,调试时使用最多的三个功能页面是:元素(ELements)、控制台(Console)、源代码(Sources),此外还有网络(Network)等。元素(Elements):用于查看或修改HTML元素的属性、CSS属性、监听事件、断点等。控制台(Console):控制台一般用于执行一次性代码,查看JavaScript对象,查看调试日志信息或异常信息。

2025-07-31 17:02:48 394

原创 词云图生成 python

高校名称后面的数字代表权重,数值越大,在云图中显示的字体越大。

2025-07-31 15:00:33 238

原创 π^3:可扩展的置换等变视觉几何学习

π³ 的神经网络模型,它主要用于视觉几何重建,简单来说就是从图片中还原出 3D 场景。过去的方法在做这件事时,通常会选一张图片作为参考视角,所有的重建都基于这个视角。但这样有个问题,如果选的参考视角不好,重建效果就会大打折扣。而 π³ 不一样,它采用了一种完全置换等变的架构,不需要固定参考视角,就能预测出具有仿射不变性的相机姿态和具有尺度不变性的局部点图。这一设计让 π³ 有很多优势:它对输入图片的顺序不敏感,非常稳健;而且扩展性很强,模型越大,性能越好;训练时收敛也更快。

2025-07-30 14:10:20 809

原创 kinect for windows SDK 2.0下载和kinect 2安装调试 获取点云

下载完后就直接安装,安装完就可以了。(安装路径好像不能自己选择,默认安装路径:C:\Program Files\Microsoft SDKs)然后打开Kinect Studio v2.0,点击连接,感应器指示灯亮起,并有图像产生就代表连接成功。回车之后,就可以调出 CMD 的终端窗口了,然后分别输入下面的命令,每输入一次命令后回车一次。安装完后,按照下图的路径打开找到图中三个文件,全选右键发送到桌面快捷方式,后面会使用到。然后是回车,输入y,等待安装完成关闭这个窗口。

2025-07-28 11:56:12 731 2

原创 jetson nano b01 yolov11测试 fp16 fp32 量化对比

最好在jetson nano环境做onnx到engine的转换,需要tensorrt的版本一致才可以。fp16仅仅比fp32少占用10M gpu显存,效果不明显。tensorrt不支持,所以也就无法转成.engine格式。

2025-07-25 13:51:24 456

原创 奥比中光 jetson nano 环境配置 ubuntu18.04

这个错误的核心原因是:你当前使用的 pyorbbecsdk 库依赖 GLIBC 2.32 版本,但系统中安装的 glibc 版本低于这个要求(从之前的信息可知是 2.27),导致 Python 无法正常导入该模块。奥比中光相机,可以Linux平台下设备作为普通CMOS相机加载,目前流行Linux平台都已经内置相应驱动,不需要额外安装驱动,只需要安装一个依赖软件freeglut3即可。添加环境变量:把新 CMake 的 bin 路径,追加到系统 PATH 里,让终端能找到新版本。环境设置:Linux。

2025-07-22 23:04:48 857 8

原创 C盘深度清理之pip篇

这个可能是很多深度学习玩家,很多python开发者忽略的地方。多年顽疾终于找到原因,大卫戴终于变小啦!

2025-07-21 10:36:46 120

原创 yolov11 安卓部署 2025最新

opencv-mobile(推荐4.11.0)前置:Android Studio 安装配置教程 - Windows(详细版)2025年最新Android Studio汉化教程https://github.com/sollyu/AndroidStudioChineseLanguagePackAndroid部署自定义YOLOV8模型(2024.10.25)-全流程基于YOLO模型的安卓手机部署YOLOv11安卓端部署终极指南:从训练到NCNN移植,30分钟搞定手机实时检测!

2025-07-18 15:19:04 917 6

原创 sam edgesam占用内存测试

推理跟踪一个物体推理完成之后模型推理推理完成之后:

2025-07-15 10:23:11 419

原创 输电线检测与跟踪

检测或者识别方面的文章大部分是输电线异常检测、零件缺陷识别。知网论文阅读,从工程的角度,以及从写论文的角度出发。这篇论文最终的效果也还不错。

2025-07-11 11:41:11 171

jetson py3.8 yolov11 环境配置的一些库的whl,可以直接安装 主要是jetson nano等

onnxruntime_gpu-1.12.1-cp38-cp38-linux_aarch64.whl tensorrt-8.2.3.0-cp38-none-linux_aarch64.whl torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl opencv_contrib_python-4.5.4.60-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl opencv_python-4.5.4.60-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl

2025-08-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除