HashMap
HashMap底层数据结构是一个数组,数组中的每个元素又是一个链表。每次添加一个对象就会产生一个链表对象,Map中的每个Entry就是数组中的一个元素(Map.Entry就是一个<key,value>),它具有当前元素指向下一个元素的引用,构成了链表。(HashMap底层是基于数组+链表组成的),不过在jdk1.7和1.8中的实现有些差别都是线程不安全的。
BASE 1.7
1.7 中的数据结构图:
1.7中的实现。
这是 HashMap 中比较核心的几个成员变量;看看分别是什么意思?
1.初始化桶的大小,因为底层是数组,所以这是数组默认的大小。
2.桶最大值。
3.默认的负载因子(0.75)。
4.table真正存放数据的数组 。
5.Map存放数量的大小。
6.桶大小,可在初始化时显示指定。
7.负载因子,可在初始化时显式指定。
重点解释下负载因子:
由于给定的 HashMap 的容量大小是固定的,比如默认初始化:
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}
给定的默认容量为16,负载因子为0.75。Map在使用过程中不断的往里面存放数据,当数据量达到了16*0.75=12就需要将当前16的容量进行扩容,而扩容这个过程涉及到rehash,复制数据等操作,所以非常消耗性能。
因此通常建议能提前预估HashMap的大小最好,尽量的减少扩容带来的性能损耗。
根据代码可以看到其实真正存放数据的是
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
这个数组,那么它又是如何定义的呢?
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
Entry 是 HashMap 中的一个内部类,从他的成员变量很容易看出:
- key 就是写入时的键。
- value 自然就是值。
- 开始的时候就提到 HashMap 是由数组和链表组成,所以这个 next 就是用于实现链表结构。
- hash 存放的是当前 key 的 hashcode。
put 方法
public V put(K key, V value) {
//判断当前数组是否为空
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
//如果key为空,则put一个空值进去
if (key == null)
return putForNullKey(value);
//根据key计算出hashcode
int hash = hash(key);
//根据计算出的hashcode定位出桶的位置
int i = indexFor(hash, table.length);
//如果桶是一个链表则需要遍历判断里面的 hashcode、key 是否和传入 key 相等,如果相等则进行覆盖,并返回原来的值。
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//如果桶是空的,说明当前位置没有数据存入;新增一个 Entry 对象写入当前位置。
addEntry(hash, key, value, i);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex) {
//判断是否需要扩容,如果需要就进行俩倍扩容,并将当前的key重新hash并定位
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
//如果不需要扩容会将当前位置的桶传入到新建的桶中,如果当前桶中有值就会在位置形成链表
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
get 方法
public V get(Object key) {
//判断key是否为null,如果是则返回一个空值(可能会出现空指针异常)
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
//根据key计算出hashcode,然后定位到具体的桶中
int hash = (key == null) ? 0 : hash(key);
//判断该位置是否为链表
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
//不是链表就根据key,key的hashcode是否相等来返回值,为链表则需要遍历直到key以及hashcode相等时候返回值
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
//什么也没有取到就返回null
return null;
}
BASE 1.8
1.7很明显一个地方就是,当Hash冲突严重时,在桶上形成的链表会变得越来越长,这样查询的效率会越来越低;时间复杂度为o(n)。
因此1.8中重点优化了这个查询效率:
1.8HashMap结构图:
先来看看几个核心的成员变量:
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient int modCount;
/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;
和 1.7 大体上都差不多,还是有几个重要的区别:
- TREEIFY_THRESHOLD 用于判断是否需要将链表转换为红黑树的阈值。
- HashEntry 修改为 Node。
Node 的核心组成其实也是和 1.7 中的 HashEntry 一样,存放的都是 key value hashcode next 等数据。
再来看看核心方法。
put 方法
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断当前是否需要初始化,空的就需要初始化(resize()中会判断是否进心初始化)
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//根据当前key的hashcode定位到具体的桶中并判断是否为空,为空则表明没有hash冲突直接在当前位置创建一个新桶即可
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e,在第 8 步的时候会统一进行赋值及返回
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果当前桶为红黑树,那就要按照红黑树的方式写入数据。
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的后面(形成链表)。
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//接着判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树。
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果在遍历过程中找到 key 相同时直接退出遍历。
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果 e != null 就相当于存在相同的 key,那就需要将值覆盖。
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//最后判断是否需要进行扩容。
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
get 方法
public V get(Object key) {
Node<K,V> e;
//首先将 key hash 之后取得所定位的桶,如果桶为空则直接返回null
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//否则判断桶的第一个位置(有可能是链表、红黑树)的 key 是否为查询的 key,是就直接返回 value。
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果第一个不匹配,则判断它的下一个是红黑树还是链表。
if (first instanceof TreeNode)
//红黑树就按照树的查找方式返回值。
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//不然就按照链表的方式遍历匹配返回值。
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
从这两个核心方法(get/put)可以看出 1.8 中对大链表做了优化,修改为红黑树之后查询效率直接提高到了 O(logn)。
无论是 1.7 还是 1.8 其实都能看出 JDK 没有对它做任何的同步操作,所以并发会出问题,他们的数据结构均是数组+链表 ,链表具有当前元素指向下一个元素的引用,当多个线程同时修改操作同一个链表,要么出现数据丢失,要么出现链表死循环,导致HashMap出现死循环。
因此 JDK 推出了专项专用的 ConcurrentHashMap ,该类位于 java.util.concurrent 包下,专门用于解决并发问题。