问题 B: 【例6.2】均分纸牌(Noip2002)
时间限制: 1 Sec 内存限制: 128 MB题目描述
有n堆纸牌,编号分别为 1,2,…, n。每堆上有若干张,但纸牌总数必为n的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为1的堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 n 的堆上取的纸牌,只能移到编号为n-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 n=4,4堆纸牌数分别为: ① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取4张牌放到④(9 8 13 10)->从③取3张牌放到 ②(9 11 10 10)-> 从②取1张牌放到①(10 10 10 10)。
输入
n(n 堆纸牌,1 ≤ n ≤ 100)
a1 a2 … an (n 堆纸牌,每堆纸牌初始数,l≤ ai ≤10000)。
输出
所有堆均达到相等时的最少移动次数。
样例输入
4
9 8 17 6
样例输出
3
提示
作业上放了两道一模一样的题,信心满满地提交结果wa了,后来出了些数据果然没过
第一次代码
#include<iostream>
using namespace std;
int main()
{
int n,sum=0,ave,ans=0;
cin>>n;
int a[100];
for(int i=0;i<n;i++)
{
cin>>a[i];
sum+=a[i];
}
ave=sum/n;
int yd=0;
for(int i=0;i<n;i++)
{
a[i]-=ave;
if((a[i]+yd)!=0)
{
yd+=a[i];//没有过滤掉移动中产生的0 如输入:17 3 20 7 3
ans++;
}
}
cout<<ans<<endl;
return 0;
}
修改后的代码
#include<iostream>
using namespace std;
int main()
{
int n,sum=0,ave,ans=0;
cin>>n;
int a[100];
for(int i=0;i<n;i++)
{
cin>>a[i];
sum+=a[i];
}
ave=sum/n;
int yd=0;
for(int i=0;i<n;i++)//依次遍历
{
a[i]-=ave;//各个数减去平均数
if((a[i]+yd)!=0)//如果a[i]+移动的步数仍然不为0
{
ans++;//次数++
}
yd+=a[i];//更新移动步数
}
cout<<ans<<endl;
return 0;
}