[单调栈] NamomoCamp Daily 1

NamomoCamp Daily 1

codeforces原题网址https://codeforces.com/contest/817/problem/D

代码源oj网址http://oj.daimayuan.top/problem/436

题解:

对于每一个数,我们考虑这个数在所有区间的总贡献。

当以这个数为最小值时,计算出向左可以延伸的长度,以及向右延伸的长度,从而计算以其为最小值的总区间个数。

同理,当以这个数为最大值时,计算两边可延伸的长度,从而计算总区间个数。

这一步可以利用单调栈来实现。

在一个数 a i a_i ai为最小值的所有区间,那么 a n s ans ans便要减去 a i ∗ m i n _ s u m i a_i*min\_sum_i aimin_sumi,即在这些区间里面, a i a_i ai都处于减数的位置。

而在 a i a_i ai为最大值的所有区间, a n s ans ans便要加上 a i ∗ m a x _ s u m i a_i*max\_sum_i aimax_sumi,即每个 a i a_i ai都处于被减数的位置。

注意

要注意反着做单调栈时,相同元素是否需要留在栈内。

代码

// Good Good Study, Day Day AC.
#include <iostream>
#include <stdio.h>
#include <cstdio>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <cstring>
#include <math.h>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <vector>
#include <map>
#include <algorithm> 
#include <unordered_map>
#include <unordered_set>
#define ffor(i,a,b) for(int i=(a) ;i<=(b) ;i++)
#define rrep(i,a,b) for(int i=(a) ;i>=(b) ;i--)
#define mst(v,s) memset(v,s,sizeof(v))
#define IOS ios::sync_with_stdio(false),cin.tie(0)
#define ll long long
#define INF 0x7f7f7f7f7f7f7f7f
#define inf 0x7f7f7f7f
#define PII pair<int,int>
#define int long long

using namespace std;


const int N = 5e5 + 10;
int n, T;
int a[N];

void ready()
{
	IOS;
	cin >> n;
	ffor(i, 1, n) cin >> a[i];
}

int rmax[N], rmin[N], lmax[N], lmin[N];
stack<int> s;
int ans;

inline void clear_() {
	while (s.size()) {
		s.pop();
	}
}

void work()
{
	clear_();
	ffor(i, 1, n) {
		while (s.size() && a[i] <= a[s.top()]) s.pop();
		if (!s.size()) lmin[i] = 1;
		else lmin[i] = s.top() + 1;
		s.push(i);
	}
	clear_();
	rrep(i, n, 1) {
		while (s.size() && a[i] < a[s.top()]) s.pop();
		if (!s.size()) rmin[i] = n;
		else rmin[i] = s.top() - 1;
		s.push(i);
	}
	clear_();
	ffor(i, 1, n) {
		while (s.size() && a[i] >= a[s.top()]) s.pop();
		if (!s.size()) lmax[i] = 1;
		else lmax[i] = s.top() + 1;
		s.push(i);
	}
	clear_();
	rrep(i, n, 1) {
		while (s.size() && a[i] > a[s.top()]) s.pop();
		if (!s.size()) rmax[i] = n;
		else rmax[i] = s.top() - 1;
		s.push(i);
	}
	ffor(i, 1, n) {
		ans -= a[i] * ((i - lmin[i] + 1) * (rmin[i] - i + 1));
		ans += a[i] * ((i - lmax[i] + 1) * (rmax[i] - i + 1));
	}
	cout << ans;
}

signed main()
{
	ready();
	work();
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值