NamomoCamp Daily 1
codeforces原题网址https://codeforces.com/contest/817/problem/D
代码源oj网址http://oj.daimayuan.top/problem/436
题解:
对于每一个数,我们考虑这个数在所有区间的总贡献。
当以这个数为最小值时,计算出向左可以延伸的长度,以及向右延伸的长度,从而计算以其为最小值的总区间个数。
同理,当以这个数为最大值时,计算两边可延伸的长度,从而计算总区间个数。
这一步可以利用单调栈来实现。
在一个数 a i a_i ai为最小值的所有区间,那么 a n s ans ans便要减去 a i ∗ m i n _ s u m i a_i*min\_sum_i ai∗min_sumi,即在这些区间里面, a i a_i ai都处于减数的位置。
而在 a i a_i ai为最大值的所有区间, a n s ans ans便要加上 a i ∗ m a x _ s u m i a_i*max\_sum_i ai∗max_sumi,即每个 a i a_i ai都处于被减数的位置。
注意
要注意反着做单调栈时,相同元素是否需要留在栈内。
代码
// Good Good Study, Day Day AC.
#include <iostream>
#include <stdio.h>
#include <cstdio>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <cstring>
#include <math.h>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <vector>
#include <map>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#define ffor(i,a,b) for(int i=(a) ;i<=(b) ;i++)
#define rrep(i,a,b) for(int i=(a) ;i>=(b) ;i--)
#define mst(v,s) memset(v,s,sizeof(v))
#define IOS ios::sync_with_stdio(false),cin.tie(0)
#define ll long long
#define INF 0x7f7f7f7f7f7f7f7f
#define inf 0x7f7f7f7f
#define PII pair<int,int>
#define int long long
using namespace std;
const int N = 5e5 + 10;
int n, T;
int a[N];
void ready()
{
IOS;
cin >> n;
ffor(i, 1, n) cin >> a[i];
}
int rmax[N], rmin[N], lmax[N], lmin[N];
stack<int> s;
int ans;
inline void clear_() {
while (s.size()) {
s.pop();
}
}
void work()
{
clear_();
ffor(i, 1, n) {
while (s.size() && a[i] <= a[s.top()]) s.pop();
if (!s.size()) lmin[i] = 1;
else lmin[i] = s.top() + 1;
s.push(i);
}
clear_();
rrep(i, n, 1) {
while (s.size() && a[i] < a[s.top()]) s.pop();
if (!s.size()) rmin[i] = n;
else rmin[i] = s.top() - 1;
s.push(i);
}
clear_();
ffor(i, 1, n) {
while (s.size() && a[i] >= a[s.top()]) s.pop();
if (!s.size()) lmax[i] = 1;
else lmax[i] = s.top() + 1;
s.push(i);
}
clear_();
rrep(i, n, 1) {
while (s.size() && a[i] > a[s.top()]) s.pop();
if (!s.size()) rmax[i] = n;
else rmax[i] = s.top() - 1;
s.push(i);
}
ffor(i, 1, n) {
ans -= a[i] * ((i - lmin[i] + 1) * (rmin[i] - i + 1));
ans += a[i] * ((i - lmax[i] + 1) * (rmax[i] - i + 1));
}
cout << ans;
}
signed main()
{
ready();
work();
return 0;
}