定理定义
二项式定理可以将x+y的任意次幂展开成和的形式
其中每个
为一个称作二项式系数的特定正整数,其等于 。
这个公式也称二项式公式或二项恒等式。使用求和符号,可以把它写作
很明显,当x==y==1时,会有下面这个公式
C(n,0)+C(n,1)+……C(n,n)=(1+1)^n=2^n
在容斥定理中:
那么总共有多少项呢?其实就是组合数。就是2^n-1(因为里面没有C(n,0)这一项)
二项式定理可以将x+y的任意次幂展开成和的形式
其中每个
为一个称作二项式系数的特定正整数,其等于 。
这个公式也称二项式公式或二项恒等式。使用求和符号,可以把它写作
很明显,当x==y==1时,会有下面这个公式
C(n,0)+C(n,1)+……C(n,n)=(1+1)^n=2^n
那么总共有多少项呢?其实就是组合数。就是2^n-1(因为里面没有C(n,0)这一项)