【论文速看】DL最新进展20241018-图像分割、医学图像分割

【图像分割】

[2024] Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook

论文链接:https://arxiv.org/pdf/2312.05391v1

代码链接:https://github.com/YilmazKadir/Segmentation_Losses

语义图像分割是将图像中的每个像素分类到特定类别的过程,在许多视觉理解系统中起着重要作用。作为评估统计模型性能的主要标准,损失函数对于塑造基于深度学习的分割算法的发展和提高其整体性能至关重要。为了帮助研究人员确定其特定应用的最佳损失函数,本综述提供了用于图像分割的25种损失函数的全面而统一的回顾。提出了一种新颖的分类法,并全面回顾了这些损失函数在图像分割中是如何定制和利用的,通过系统分类强调了它们的重要特征和应用。此外,为了评估这些方法在实际场景中的有效性,在已建立的医学和自然图像数据集上对一些不同且著名的损失函数进行了公正的评估。最后,总结了当前的挑战,揭示了未来的研究机会。

在这里插入图片描述


【医学图像分割】

SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation

论文链接:https://arxiv.org/pdf/2410.13486v1

代码链接:无

半监督学习(SSL)用于医学图像分割是一个具有挑战性但非常实用的任务,它通过利用未标记的样本来减少对大规模标记数据集的依赖。在SSL技术中,由FixMatch推广的弱到强一致性框架已经成为分类任务中最先进的方法。值得注意的是,这种简单的流程在医学图像分割中也表现出了竞争力。然而,仍然存在两个关键的限制,阻碍了其高效适应:(1)忽略了上下文依赖关系,导致对相似的语义特征产生不一致的预测,从而导致对象分割不完整;(2)未能利用标记数据和未标记数据之间的语义相似性,引发了相当大的类分布差异。为了解决这些限制,作者提出了一种基于FixMatch的新型半监督框架,命名为SemSim,它从语义相似性的角度出发,具有两个吸引人的设计:(1)通过推理图像内的成对亲和图来纠正逐像素预测,从而将上下文依赖关系明确地整合到最终预测中;(2)通过特征查询机制连接标记数据和未标记数据,用于紧凑类表示学习,充分考虑跨图像解剖学相似性。由于可靠的语义相似性提取依赖于强大的特征,进一步引入了一个有效的空间感知融合模块(SFM),以从多个尺度探索独特信息。广泛的实验表明,SemSim在三个公开的分割基准测试中一致优于现有最先进方法。

在这里插入图片描述


[Medical Image Analysis 2024] I2U-Net: A dual-path U-Net with rich information interaction for medical image segmentation

论文链接:https://www.sciencedirect.com/science/article/abs/pii/S136184152400166X

代码链接:https://github.com/duweidai/I2U-Net

尽管U形网络在许多医学图像分割任务中取得了显著的性能,但它们很少对层次结构的序列关系进行建模。这种弱点使得当前层难以有效利用上一层的历史信息,导致对于边界模糊和形状不规则的病变分割结果不尽如人意。为了解决这个问题,作者提出了一种新颖的双重路径U-Net,命名为I2U-Net。新提出的网络通过双重路径之间的丰富信息交互,鼓励历史信息的重用和重新探索,使深层能够学习到更全面的特征,这些特征既包含低级细节描述,又包含高级语义抽象。具体来说,作者引入了一个多功能信息交互模块(MFII),通过统一设计可以模型化跨路径、跨层以及跨路径和层的信息交互,使所提出的I2U-Net表现得类似于展开的RNN,并享受其建模时间序列信息的优势。此外,为了进一步有选择性地和灵敏地整合双重路径编码器提取的信息,提出了一个整体信息融合与增强模块(HIFA),它可以有效地连接编码器和解码器。在四个具有挑战性的任务上的广泛实验,包括皮肤病变、息肉、脑肿瘤和腹部多器官分割,一致显示出所提出的I2U-Net比其他最先进的方法具有更好的性能和泛化能力。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IRevers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值