一、报错原因
Windows下多线程的问题,和torch.utils.data.DataLoader
类有关。num_workers
参数设置不当
from torch.utils.data import DataLoader
...
dataset_train = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16)
dataset_test = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16)
num_workers参数官方API解释:num_workers (int, optional) – how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)
该参数是指在进行数据集加载时,启用的线程数目。num_workers
参数必须大于等于0,0的话表示数据集加载在主进程中进行,大于0表示通过多个进程来提升数据集加载速度。默认值为0。
二、解决方法
- 将
num_workers
值设为0
from torch.utils.data import DataLoader
...
dataset_train = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=0)
dataset_test = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=0)
- 如果
num_workers
的值大于0
,要将运行的部分放进if __name__ == '__main__':
才不会报错:
from torch.utils.data import DataLoader
...
if __name__ == '__main__':
dataset_train = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16)
dataset_test = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16)
- 如果将运行部分放进
main
方法里面还报错,一般是num_workers
设置太大了。可以调小一点OSError: [WinError 1455] 页面文件太小,无法完成操作。 Error loading “F:\anaconda3\envs\xxx\lib\site-packages\torch\lib\caffe2_detectron_ops_gpu.dll” or one of its dependencies.
train(model, device, dataset_train, optimizer, epoch + 1, FocalLoss, batch_size)
num_workers
参数设置技巧:
数据集较小时(小于2W)建议num_works不用管默认就行,因为用了反而比没用慢。
当数据集较大时建议采用,num_works一般设置为(CPU线程数±1)为最佳,可以用以下代码找出最佳num_works:
import time
import torch.utils.data as d
import torchvision
import torchvision.transforms as transforms
if __name__ == '__main__':
BATCH_SIZE = 100
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
train_set = torchvision.datasets.MNIST('\mnist', download=True, train=True, transform=transform)
# data loaders
train_loader = d.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
for num_workers in range(20):
train_loader = d.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers)
# training ...
start = time.time()
for epoch in range(1):
for step, (batch_x, batch_y) in enumerate(train_loader):
pass
end = time.time()
print('num_workers is {} and it took {} seconds'.format(num_workers, end - start))
参考文章:
https://blog.csdn.net/Ginomica_xyx/article/details/113745596
https://blog.csdn.net/qq_41196472/article/details/106393994