一.MySQL的发展历史
1.Memcached(缓存)+ MySQL + 垂直拆分
随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都出现了性能问题,程序员们开始大量使用缓存技术来缓解数据库的压力,优化数据库的结构和索引,开始比较流行的是通过文件缓存来缓解数据压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带来了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。
同时单个数据库也不能满足需求了,增添了多个数据库,并且将它们分类,比如说买家和卖家。
2.MySQL主从读写分离
由于数据库的写入压力增大,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性,并且从数据库不断重复主数据库,提高了安全性。MySQL的master-slave模式成为了这个时代的网站标配了。
3.分库分表 + 水平拆分 + MySQL集群
在Memcached的高速缓存,MySQL的主从复制,读写分离的基础上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。
3.MySQL的扩展性瓶颈
MySQL数据库也经常存储一些大文本的字段,导致数据库表非常大,在做数据库回复的的时候就导致非常的慢,不容易快速恢复数据库。如果把这些数据从MySQL省去,MySQL将变得非常的小。关系型数据库很强大,但是它不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难。
二.NoSql是什么?
No Only SQL 意指不仅仅时SQL,泛指非关系型数据库。
这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。
数据之间无关系,这样就非常容易扩展。
大数据量高性能
NoSQL数据库都具有非常高的读写性能,尤其是在大数据量下,同样表现优秀。这得益于它的无关性,数据库的结构简单。
一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大颗粒的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细颗粒的Cache,所以NoSQL在这层面上就要性能高很多。
多样灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系型数据库中,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是噩梦。