- 博客(12)
- 收藏
- 关注
原创 统计机器学习导论第七章读书笔记
统计机器学习导论第七章读书笔记7.1 卷积7.2 再生性7.3 大数定律6.4 中心极限定理 今天主要写的是第七章,第七章的主要内容是独立随机变量的求和的一些性质。 本节的主要内容包括独立随机变量的求和的一些性质以及独立同分布在样本个数趋向于无穷的一些表现。7.1 卷积 首先介绍的是卷积公式,可以利用卷积公式计算两个独立的概率分布的和所满足的概率分布。比较简单易懂。对于连续性的概率分布,假设x∼f(x)x\sim f(x)x∼f(x),y∼g(y)y\sim g(y)y∼g(y),则对于z=x+
2020-05-28 01:13:53 509
原创 统计机器学习导论第六章读书笔记
统计机器学习导论 第六章读书笔记6.1 多项分布6.2 多元正态分布6.3 迪利克雷分布6.4 威沙特分布总结 今天开一个新坑,阅读一下统计机器学习这本书,并进行一些翻译说一说自己的一些感想。前五章内容主要是一些基础的概率论入门知识,所以从第六章开始写。 第六章主要讲的是多项分布的一些内容,本章当中会列举最著名的几个多项分布以及其一些性质,诸如,期望,方差,母函数(参考国内《基础概率论》李贤平老师的教材当中的叫法)。6.1 多项分布 3.2节当中介绍的伯努利分布是一个成功率为p的实验进行n次实验
2020-05-26 23:07:39 742
原创 Unsupervised Deep Embedding for Clustering Analysis论文阅读
Unsupervised Deep Embedding for Clustering Analysis论文阅读 拖更了很长一段时间处理各种个人事情,今天分享一篇论文阅读,利用DNN框架进行聚类的方法的论文。 本篇文章首先的理论思路灵感很大程度上来源于2008年的t-SNE论文——Visualizing Data using t-SNE,所以今天会结合两篇论文一起进行一个分析。后者主要是用于高维数据的降维可视化过程。t-SNE技术方法中的核心思想是,对于高维空间XXX和低维空间YYY当中的两个点X1,X
2020-05-26 17:16:58 434
原创 GAN初探(论文Generative Adversarial Nets阅读笔记)
GAN初探(论文Generative Adversarial Nets阅读笔记)证明最终收敛于pG=pdatap_G=p_{data}pG=pdata证明上述算法流程就等同于对(1)式进行优化实验代码(参考[https://gitee.com/xiaonaw/PyTorch-GAN/blob/master/implementations/gan/gan.py](https://gitee.co...
2020-02-05 16:21:51 491
原创 VAE异常检测论文复现——Anomaly Detection for Skin Disease Images Using Variational Autoencoder
VAE异常检测论文复现——Anomaly Detection for Skin Disease Images Using Variational Autoencoder数据集下载数据集预处理及数据集调用深度学习网络结构Loss函数的选择实验结果 今天内容是复现论文Anomaly Detection for Skin Disease Images Using Variational Autoenc...
2020-01-15 23:02:16 3464 1
原创 VAE逻辑整理及VAE在异常检测中的小实验(附代码)
VAE逻辑整理及VAE在异常检测中的小实验(附代码)Variance和control variate两种常见的分类器相应代码Minst数据集的训练和重构KDD99数据 本文主要讲解一下整个VAE变分推理在实践当中的逻辑,其中会结合案例讲一讲在实践当中VAE变分推理遇到的一些问题,在实践当中一些代码的写法以及公式在实践里的一些变式。有一些个人理解,如果有误欢迎大家一起指正讨论~!Variance...
2020-01-09 14:11:37 5382 8
原创 Structured Energy Based Models for Anomaly Detection论文阅读
Deep Structured Energy Based Models for Anomaly Detection论文阅读逻辑算法理论EBMsRBM算法Denoising Autoencoders and Score Matching算法 本文是一篇基于Deep Structured Energy方法来进行异常检测的文章,该模型的主要特点是其可以通用到各种类型的dataset上面,包括spat...
2019-11-10 15:39:57 1166 1
原创 Auto-Encoding Variational Bayes论文阅读
Auto-Encoding Variational Bayes论文阅读Auto-Encoding Variational Bayes论文阅读方法数学理论基础介绍MLE(ML)和MAP算法mean-field variational inference方法解释变分下界的推理KL散度的数学推导算法对隐含变量z的表述核心算法算法应用——Variational Auto-EncoderAuto-Enco...
2019-11-09 20:45:53 1187
原创 PRML读书笔记 第十一章 采样方法(1)
PRML读书笔记 第十一章 采样方法(1)基本采样算法标准概率分布下的采样算法标准概率分布下的拒绝采样方法标准概率分布下的可调节拒绝采样方法重要采样马尔科夫蒙特卡洛Metropolis算法Metropolis-Hastings算法吉布斯采样心得体会 整本书的核心都是在知道样本以及假设先验概率分布的情况下,求后验概率分布问题,后验概率的主要用处则是用来计算期望,所以这里的话E[f]=∫f(z)p(...
2019-10-20 00:18:42 638
原创 PRML读书笔记 第十章 近似推断(3)
PRML读书笔记 第十章 近似推断(3)拉普拉斯近似方法变分logistic回归总结一些疑问 本章主要更新一下局部变分方法的使用,我理解的局部变分方法的核心主要是寻找概率似然分布函数的近似分布,并限制其“界限”达到优化计算的目的。同时局部似然方法有点类似于图模型当中的“马尔可夫毯”等问题,只需要考虑相关节点的概率分布,不需要对全局进行计算。 书本第五节局部变分法的理论内容比较少,主要是讲述了怎...
2019-10-17 02:42:11 392
原创 PRML读书笔记 第十章 近似推断(2)
PRML读书笔记 第十章 近似推断(2)混合高斯模型的EM方法混合高斯模型的基本概念混合高斯模型的似然方法变分近似方法的混合高斯模型变分近似混合高斯模型的步骤变分下界本章内容的疑惑之处变分下界提供的变分方法诱导分解 本小节主要记录混合高斯模型的EM做法和变分估计做法,对比两种做法的异同之处。混合高斯模型的EM方法混合高斯模型的基本概念混合高斯分布的含义:混合高斯分布即多个高斯分布的和的叠...
2019-10-14 01:27:56 509
原创 PRML读书笔记 第十章 近似推断(1)
PRML读书笔记 第十章 近似推断(1)近似推断方法概述一元高斯问题的传统做法和变分推断方法心得体会 从今天起开始更新关于PRML书籍当中的一些学习笔记和感悟心得。目前先从最近所学的部分开始更新,会在未来一段时间当中补更之前的章节所学内容。 这篇文章主要简述一下变分估计方法的作用和基本概念,并详细对比变分近似法下解决线性回归问题和之前的统计方法解决线性问题的异同。近似推断方法概述近似...
2019-10-09 23:50:24 647
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人