Leetcode 4. Median of Two Sorted Arrays 两有序序列的中位数

4. Median of Two Sorted Arrays

最近又遇到这道题,就查了一下资料,找到一个好方法但是原文代码格式有点问题,顺便在这儿做做整理

大致思路

我们有两个已排序序列,需要找到中位数,在这里我们改一下,需要找到第k位数(奇数偶数之后讨论),嫌麻烦可以直接看代码里的注释

命名
  • 我们把两个有序序列称为nums1 nums2,长度分别为m n

  • nums1 nums2中取出来的子序列分别称为l1 l2,长度分别为count1 count2

  • l1 l2中各自的最大数分别为a b(即子序列最后一个数)

如图:
在这里插入图片描述

过程

首先我们明确,m+n为奇数数,中位数即为第(m+n)/2,若m+n为偶数,中位数是第(m+n)/2、第(m+n)/2+1个数的平均数

我们先不管合并后的序列,在两个序列中抽取k个数,而为保持divide&conquer的效率,每个序列抽取k/2

取出的两个子序列(长度和为kl1l2中,若l1的最大值a小于l2的最大值b,则这k个数按顺序排列后,l1中的任何一个数不可能排在第k位(因为l2中至少有一个数b排在a之后)

所以,我们可以把l1完全舍弃,(私以为nums2中的除l2部分也可以一并舍去,在findKth中添加数组边界i1 j1 i2 j2即可)此外,需要注意,舍弃掉l1后我们需要更新k值(k-count1

a>b,情况类似

a==b,如果两者相等,则按序排列两个子数组后,第k位的数即为子序列的最大数

这里可能会误以为整个序列的kth数一定是两个子序列的最大数a、b中的一个,但如果a<b,a后面的数仍可能小于b,即b也可能不是整个序列的kth数

代码
class Solution
{
public:
    double findKth(vector<int>& nums1,vector<int>& nums2,int i,int j,int k)
    {
        //cout<<i<<" "<<j<<"   k:"<<k<<endl;
        int m=nums1.size()-i;
        int n=nums2.size()-j;
        //始终假设nums2的长度大于等于nums1的长度,见后面的注释
        if (m > n)
            return findKth(nums2, nums1, j,i, k);

        //只有nums2,返回其kth元素
        if (m == 0)
            return nums2[j+k - 1];
        //需要返回第一个元素,这种情况直接比较
        if (k == 1)
            return min(nums1[i], nums2[j]);


        /*
        我们先不管合并后的序列,在两个序列中抽取k个数,
        为保持divide&conquer的效率,每个序列抽取k/2
         */
        int count1 = min(k / 2, m);  
        int count2 = k - count1;  //nums2的长度大于nums1的长度

        /*
        取出的两个子序列(count和为k)l1、l2中,若l1的最大值小于l2的最大值,
        则这k个数按顺序排列后,l1中的任何一个数不可能排在第k位(因为l2中至少有一个数排在l1最大值之后),
        所以,我们把l1完全舍弃,(私以为nums2中的除l2部分也可以一并舍去,在findKth中添加数组边界i1 j1 i2 j2即可)
        此外,需要注意,舍弃掉l1后我们需要更新k值(k-count1)
         */
        if (nums1[i+count1 - 1] < nums2[j+count2 - 1])
            //舍弃l1,更新k值
            return findKth(nums1, nums2, i+count1, j,k - count1);
        /*
        同理,如果l1中的最大数大于l2中的最大数,舍去全部l2(也可以舍弃nums1中除l1的部分??)
         */
        else if (nums1[i+count1 - 1] > nums2[j+count2 - 1])
            return findKth(nums1,nums2,i,j+count2, k - count2);
        /*
        如果两者相等,则按序排列两个子数组后,第k位的数即为子序列的最大数,
        这里可能会误以为整个序列的kth数一定是两个子序列的最大数a、b中的一个,
        但如果a<b,a后面的数仍可能小于b,即b也可能不是整个序列的kth数
         */
        else
            return nums1[i+count1 - 1];
    }
    
	double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
	{
        int m=nums1.size();
        int n=nums2.size();

		int total = m + n;
        double result=0;
        //是奇数(最后一个二进制位是1) 1 2 3 => 2
		if (total & 0x1)
            result=findKth(nums1,nums2,0,0, total / 2 + 1);
        //偶数  1 2 4 5 => (2+4)/2
		else{
            //cout<<findKth(nums1, nums2,0,0, total / 2)<<" "<<findKth(nums1, nums2,0,0, total / 2 + 1)<<endl;
            int r1=findKth(nums1, nums2,0,0, total / 2);
            int r2=findKth(nums1, nums2,0,0, total / 2 + 1);
            //cout<<"result: "<<r1<<" "<<r2<<endl;
            
            result=(r1+r2) / 2.0;
        }
        return result;
			
	}
};

参考:leetcode之 median of two sorted arrays

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可以使用二分查找算法来解决这个问题。 首先,我们可以将两个数组合并成一个有序数组,然后求出中位数。但是,这个方法的时间复杂度为 $O(m + n)$,不符合题目要求。因此,我们需要寻找一种更快的方法。 我们可以使用二分查找算法在两个数组中分别找到一个位置,使得这个位置将两个数组分成的左右部分的元素个数之和相等,或者部分的元素个数之差不超过 1。这个位置就是中位数所在的位置。 具体来说,我们分别在两个数组中二分查找,假设现在在第一个数组中找到了一个位置 $i$,那么在第二个数组中对应的位置就是 $(m + n + 1) / 2 - i$。如果 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m$ 个,或者 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m + 1$ 个,则这个位置就是中位数所在的位置。 具体的实现可以参考以下 Java 代码: ```java public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; if (m > n) { // 保证第一个数组不大于第二个数组 int[] tmp = nums1; nums1 = nums2; nums2 = tmp; int t = m; m = n; n = t; } int imin = 0, imax = m, halfLen = (m + n + 1) / 2; while (imin <= imax) { int i = (imin + imax) / 2; int j = halfLen - i; if (i < imax && nums2[j - 1] > nums1[i]) { imin = i + 1; // i 太小了,增大 i } else if (i > imin && nums1[i - 1] > nums2[j]) { imax = i - 1; // i 太大了,减小 i } else { // i 是合适的位置 int maxLeft = 0; if (i == 0) { // nums1 的左边没有元素 maxLeft = nums2[j - 1]; } else if (j == 0) { // nums2 的左边没有元素 maxLeft = nums1[i - 1]; } else { maxLeft = Math.max(nums1[i - 1], nums2[j - 1]); } if ((m + n) % 2 == 1) { // 总元素个数是奇数 return maxLeft; } int minRight = 0; if (i == m) { // nums1 的右边没有元素 minRight = nums2[j]; } else if (j == n) { // nums2 的右边没有元素 minRight = nums1[i]; } else { minRight = Math.min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 $O(\log\min(m, n))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值