问题描述
有a, b, c三座塔,在a塔上有n个圆盘,这些圆盘自上而下,从小到大的叠放在一起,现在要把圆盘从a移到b上,每次只能移动一个圆盘,并且任何时刻都不能将大的圆盘压在小的圆盘上。
解题思路
- 首先设法将a上的前n-1个圆盘借助c移动到b上;
- 将a上的最后一个圆盘移动到b上;
- 借助c移动的过程中,将c上的n-1个圆盘借助b移动到a上,然后重复步骤一。
解题代码
#include<iostream>
using namespace std;
int sum = 0; //记录移动次数
void move(int n, char a, char b)
{
sum++;
cout << "move " << n << " from " << a << " to " << b << endl;
}
//采用递归算法,不停地重复前两个步骤
void hanoi(int n, char a, char b, char c)
{
if (n > 0)
{
hanoi(n - 1, a, c, b); //步骤一
move(n, a, b);
hanoi(n - 1, c, b, a); //步骤二
}
}
int main()
{
int n;
cout << "请输入汉诺塔的层数:";
cin >> n;
char a = 'a', b = 'b', c = 'c';
hanoi(n, a, b, c);
cout << "移了"<<sum<<"次";
return 0;
}
运行结果