题目5:利用条件运算符的嵌套来完成此题:学习成绩> =90分的同学用A表示,60-89分之间的用B表示,60分以下的用C表示。
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("请输入一个成绩:");
int r = sc.nextInt();
char grade = r>=90?'A':r>=60?'B':'C';
System.out.println("等级为:"+grade);
}
}
题目6:输入两个正整数m和n,求其最大公约数和最小公倍数。
思路:先求最大公约数,再求最小公倍数。
求最大公约数:欧几里德算法 gcd(a,b) = gcd(b,a mod b)。
最小公倍数:a*b /gcd(a,b)
//1.求最大公约数
public static int gcd(int p,int q){
if(q==0){
return p;
}
int r = p%q;
return gcd(q,r);
}
2.求最小公倍数
public static int lcm(int a,int b){
return a*b/gcd(a,b);
}
public static void main(String[] args) {